Properties

Label 2-425-1.1-c1-0-15
Degree $2$
Conductor $425$
Sign $1$
Analytic cond. $3.39364$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.24·2-s + 1.66·3-s − 0.457·4-s + 2.06·6-s + 4.35·7-s − 3.05·8-s − 0.242·9-s + 0.760·11-s − 0.759·12-s + 3.53·13-s + 5.41·14-s − 2.87·16-s + 17-s − 0.300·18-s + 0.972·19-s + 7.23·21-s + 0.945·22-s − 7.47·23-s − 5.06·24-s + 4.39·26-s − 5.38·27-s − 1.99·28-s − 5.25·29-s + 8.62·31-s + 2.53·32-s + 1.26·33-s + 1.24·34-s + ⋯
L(s)  = 1  + 0.878·2-s + 0.958·3-s − 0.228·4-s + 0.842·6-s + 1.64·7-s − 1.07·8-s − 0.0807·9-s + 0.229·11-s − 0.219·12-s + 0.980·13-s + 1.44·14-s − 0.719·16-s + 0.242·17-s − 0.0708·18-s + 0.223·19-s + 1.57·21-s + 0.201·22-s − 1.55·23-s − 1.03·24-s + 0.861·26-s − 1.03·27-s − 0.376·28-s − 0.976·29-s + 1.54·31-s + 0.447·32-s + 0.219·33-s + 0.213·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(3.39364\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 425,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.734987937\)
\(L(\frac12)\) \(\approx\) \(2.734987937\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 - T \)
good2 \( 1 - 1.24T + 2T^{2} \)
3 \( 1 - 1.66T + 3T^{2} \)
7 \( 1 - 4.35T + 7T^{2} \)
11 \( 1 - 0.760T + 11T^{2} \)
13 \( 1 - 3.53T + 13T^{2} \)
19 \( 1 - 0.972T + 19T^{2} \)
23 \( 1 + 7.47T + 23T^{2} \)
29 \( 1 + 5.25T + 29T^{2} \)
31 \( 1 - 8.62T + 31T^{2} \)
37 \( 1 + 5.94T + 37T^{2} \)
41 \( 1 + 4.29T + 41T^{2} \)
43 \( 1 + 3.98T + 43T^{2} \)
47 \( 1 + 6.28T + 47T^{2} \)
53 \( 1 - 1.54T + 53T^{2} \)
59 \( 1 - 2.66T + 59T^{2} \)
61 \( 1 + 3.32T + 61T^{2} \)
67 \( 1 + 15.9T + 67T^{2} \)
71 \( 1 + 11.0T + 71T^{2} \)
73 \( 1 - 15.3T + 73T^{2} \)
79 \( 1 + 4.45T + 79T^{2} \)
83 \( 1 - 6.71T + 83T^{2} \)
89 \( 1 - 12.3T + 89T^{2} \)
97 \( 1 - 7.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.57865059451670590940931722371, −10.29472769276743630664068390779, −9.082243673707404764298609520585, −8.388877621671779673156243229126, −7.82256939048566820956661436682, −6.18583462385291200260309802812, −5.21395535328633499078677321425, −4.20926726214541565482767402750, −3.31201376684038709815969091525, −1.84188267605493801351100008422, 1.84188267605493801351100008422, 3.31201376684038709815969091525, 4.20926726214541565482767402750, 5.21395535328633499078677321425, 6.18583462385291200260309802812, 7.82256939048566820956661436682, 8.388877621671779673156243229126, 9.082243673707404764298609520585, 10.29472769276743630664068390779, 11.57865059451670590940931722371

Graph of the $Z$-function along the critical line