L(s) = 1 | + (0.813 − 1.52i)3-s + (−1.61 − 1.55i)5-s + (−2.58 + 0.567i)7-s + (−1.67 − 2.48i)9-s + (0.793 − 0.457i)11-s − 4.31·13-s + (−3.68 + 1.20i)15-s + (0.465 − 0.268i)17-s + (−1.12 − 0.651i)19-s + (−1.23 + 4.41i)21-s + (3.99 − 6.91i)23-s + (0.193 + 4.99i)25-s + (−5.16 + 0.537i)27-s − 3.46i·29-s + (−5.56 + 3.21i)31-s + ⋯ |
L(s) = 1 | + (0.469 − 0.882i)3-s + (−0.720 − 0.693i)5-s + (−0.976 + 0.214i)7-s + (−0.558 − 0.829i)9-s + (0.239 − 0.138i)11-s − 1.19·13-s + (−0.950 + 0.310i)15-s + (0.112 − 0.0651i)17-s + (−0.258 − 0.149i)19-s + (−0.269 + 0.962i)21-s + (0.832 − 1.44i)23-s + (0.0386 + 0.999i)25-s + (−0.994 + 0.103i)27-s − 0.642i·29-s + (−0.998 + 0.576i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.919 + 0.394i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.919 + 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.167596 - 0.816114i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.167596 - 0.816114i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.813 + 1.52i)T \) |
| 5 | \( 1 + (1.61 + 1.55i)T \) |
| 7 | \( 1 + (2.58 - 0.567i)T \) |
good | 11 | \( 1 + (-0.793 + 0.457i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4.31T + 13T^{2} \) |
| 17 | \( 1 + (-0.465 + 0.268i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.12 + 0.651i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.99 + 6.91i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.46iT - 29T^{2} \) |
| 31 | \( 1 + (5.56 - 3.21i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.36 - 2.52i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9.89T + 41T^{2} \) |
| 43 | \( 1 + 8.22iT - 43T^{2} \) |
| 47 | \( 1 + (3.75 + 2.17i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.984 - 1.70i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (7.15 + 12.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (8.38 + 4.84i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.4 + 6.05i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.943iT - 71T^{2} \) |
| 73 | \( 1 + (-5.11 - 8.85i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.71 + 9.90i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9.35iT - 83T^{2} \) |
| 89 | \( 1 + (-0.874 + 1.51i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 10.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95550178974331055250611796156, −9.553063165460161534553445187363, −8.968602195132314234626077395887, −8.007816065078386466667016665279, −7.14150746583763601841953453357, −6.28970342397799752370971422313, −4.93300601409579097222173328391, −3.59382462512449936322370239968, −2.42593017078117974567554341737, −0.48430579865082527688088716467,
2.69139429687237224378641823735, 3.56065451825985014670011475941, 4.52313335295056899405178042647, 5.86419922584151741868186282566, 7.18895898803137909819578274331, 7.76145007601201575910862411828, 9.202399462509331166758465541720, 9.671984315558296960133506744091, 10.65281724543221153374153239937, 11.34640682602337073611571989190