L(s) = 1 | + (2 − 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (−43 + 74.4i)5-s + 36·6-s + (24.5 + 127. i)7-s − 63.9·8-s + (−40.5 + 70.1i)9-s + (172 + 297. i)10-s + (−17 − 29.4i)11-s + (72 − 124. i)12-s − 3·13-s + (490 + 169. i)14-s − 774.·15-s + (−128 + 221. i)16-s + (952 + 1.64e3i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.769 + 1.33i)5-s + 0.408·6-s + (0.188 + 0.981i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.543 + 0.942i)10-s + (−0.0423 − 0.0733i)11-s + (0.144 − 0.249i)12-s − 0.00492·13-s + (0.668 + 0.231i)14-s − 0.888·15-s + (−0.125 + 0.216i)16-s + (0.798 + 1.38i)17-s + ⋯ |
Λ(s)=(=(42s/2ΓC(s)L(s)(0.266−0.963i)Λ(6−s)
Λ(s)=(=(42s/2ΓC(s+5/2)L(s)(0.266−0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
42
= 2⋅3⋅7
|
Sign: |
0.266−0.963i
|
Analytic conductor: |
6.73612 |
Root analytic conductor: |
2.59540 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ42(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 42, ( :5/2), 0.266−0.963i)
|
Particular Values
L(3) |
≈ |
1.27438+0.969495i |
L(21) |
≈ |
1.27438+0.969495i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2+3.46i)T |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1+(−24.5−127.i)T |
good | 5 | 1+(43−74.4i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(17+29.4i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+3T+3.71e5T2 |
| 17 | 1+(−952−1.64e3i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−744.5+1.28e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−112+193.i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+6.50e3T+2.05e7T2 |
| 31 | 1+(865.5+1.49e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−3.81e3+6.61e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−1.54e4T+1.15e8T2 |
| 43 | 1−1.84e4T+1.47e8T2 |
| 47 | 1+(9.23e3−1.59e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−9.97e3−1.72e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−1.59e4−2.75e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−2.88e4+4.99e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−3.02e4−5.24e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+4.48e4T+1.80e9T2 |
| 73 | 1+(1.04e4+1.80e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−1.52e4+2.64e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−1.10e5T+3.93e9T2 |
| 89 | 1+(−2.94e4+5.10e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.19e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.92620898687039245536545767616, −14.47216167005077790726340839807, −12.75117476496957972854954856916, −11.44387136750234889762405014090, −10.71752267874604716279027041342, −9.284111729075777432914812719963, −7.71143991980332458817599347908, −5.81909624726626437707333953063, −3.87527031054882447815796470880, −2.60770790110591299546685996876,
0.802615122734954768208848093292, 3.85567495749267176241131341764, 5.25792909075009862551866829005, 7.31543270937134885296979933300, 8.056751827785019443898501584076, 9.464709440523692675298340368460, 11.59235423336549650335378403877, 12.62707534485783479501012057098, 13.59533718097096214751554718749, 14.65670869096059589267035278023