L(s) = 1 | − 4·2-s + 9·3-s + 16·4-s + 26·5-s − 36·6-s − 49·7-s − 64·8-s + 81·9-s − 104·10-s + 664·11-s + 144·12-s + 318·13-s + 196·14-s + 234·15-s + 256·16-s + 1.58e3·17-s − 324·18-s + 236·19-s + 416·20-s − 441·21-s − 2.65e3·22-s + 2.21e3·23-s − 576·24-s − 2.44e3·25-s − 1.27e3·26-s + 729·27-s − 784·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.465·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.328·10-s + 1.65·11-s + 0.288·12-s + 0.521·13-s + 0.267·14-s + 0.268·15-s + 1/4·16-s + 1.32·17-s − 0.235·18-s + 0.149·19-s + 0.232·20-s − 0.218·21-s − 1.16·22-s + 0.871·23-s − 0.204·24-s − 0.783·25-s − 0.369·26-s + 0.192·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(42s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(42s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.604148431 |
L(21) |
≈ |
1.604148431 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 3 | 1−p2T |
| 7 | 1+p2T |
good | 5 | 1−26T+p5T2 |
| 11 | 1−664T+p5T2 |
| 13 | 1−318T+p5T2 |
| 17 | 1−1582T+p5T2 |
| 19 | 1−236T+p5T2 |
| 23 | 1−2212T+p5T2 |
| 29 | 1+4954T+p5T2 |
| 31 | 1+7128T+p5T2 |
| 37 | 1−4358T+p5T2 |
| 41 | 1−10542T+p5T2 |
| 43 | 1+8452T+p5T2 |
| 47 | 1−5352T+p5T2 |
| 53 | 1+33354T+p5T2 |
| 59 | 1+15436T+p5T2 |
| 61 | 1+36762T+p5T2 |
| 67 | 1−40972T+p5T2 |
| 71 | 1+9092T+p5T2 |
| 73 | 1+73454T+p5T2 |
| 79 | 1−89400T+p5T2 |
| 83 | 1+6428T+p5T2 |
| 89 | 1+122658T+p5T2 |
| 97 | 1−21370T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.96066037683515807518789254277, −14.02558213272790024076451752766, −12.62420720661657490498070096154, −11.24976535444859459911334072796, −9.702904309423403175237025968529, −9.042382273677078234612860967986, −7.48292139659386949088251555634, −6.06450826353750466648866217386, −3.52314199137743227571797404234, −1.45318512148560827288835303215,
1.45318512148560827288835303215, 3.52314199137743227571797404234, 6.06450826353750466648866217386, 7.48292139659386949088251555634, 9.042382273677078234612860967986, 9.702904309423403175237025968529, 11.24976535444859459911334072796, 12.62420720661657490498070096154, 14.02558213272790024076451752766, 14.96066037683515807518789254277