Properties

Label 2-42-1.1-c5-0-1
Degree $2$
Conductor $42$
Sign $1$
Analytic cond. $6.73612$
Root an. cond. $2.59540$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9·3-s + 16·4-s + 26·5-s − 36·6-s − 49·7-s − 64·8-s + 81·9-s − 104·10-s + 664·11-s + 144·12-s + 318·13-s + 196·14-s + 234·15-s + 256·16-s + 1.58e3·17-s − 324·18-s + 236·19-s + 416·20-s − 441·21-s − 2.65e3·22-s + 2.21e3·23-s − 576·24-s − 2.44e3·25-s − 1.27e3·26-s + 729·27-s − 784·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.465·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.328·10-s + 1.65·11-s + 0.288·12-s + 0.521·13-s + 0.267·14-s + 0.268·15-s + 1/4·16-s + 1.32·17-s − 0.235·18-s + 0.149·19-s + 0.232·20-s − 0.218·21-s − 1.16·22-s + 0.871·23-s − 0.204·24-s − 0.783·25-s − 0.369·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(42\)    =    \(2 \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(6.73612\)
Root analytic conductor: \(2.59540\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 42,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.604148431\)
\(L(\frac12)\) \(\approx\) \(1.604148431\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 - p^{2} T \)
7 \( 1 + p^{2} T \)
good5 \( 1 - 26 T + p^{5} T^{2} \)
11 \( 1 - 664 T + p^{5} T^{2} \)
13 \( 1 - 318 T + p^{5} T^{2} \)
17 \( 1 - 1582 T + p^{5} T^{2} \)
19 \( 1 - 236 T + p^{5} T^{2} \)
23 \( 1 - 2212 T + p^{5} T^{2} \)
29 \( 1 + 4954 T + p^{5} T^{2} \)
31 \( 1 + 7128 T + p^{5} T^{2} \)
37 \( 1 - 4358 T + p^{5} T^{2} \)
41 \( 1 - 10542 T + p^{5} T^{2} \)
43 \( 1 + 8452 T + p^{5} T^{2} \)
47 \( 1 - 5352 T + p^{5} T^{2} \)
53 \( 1 + 33354 T + p^{5} T^{2} \)
59 \( 1 + 15436 T + p^{5} T^{2} \)
61 \( 1 + 36762 T + p^{5} T^{2} \)
67 \( 1 - 40972 T + p^{5} T^{2} \)
71 \( 1 + 9092 T + p^{5} T^{2} \)
73 \( 1 + 73454 T + p^{5} T^{2} \)
79 \( 1 - 89400 T + p^{5} T^{2} \)
83 \( 1 + 6428 T + p^{5} T^{2} \)
89 \( 1 + 122658 T + p^{5} T^{2} \)
97 \( 1 - 21370 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.96066037683515807518789254277, −14.02558213272790024076451752766, −12.62420720661657490498070096154, −11.24976535444859459911334072796, −9.702904309423403175237025968529, −9.042382273677078234612860967986, −7.48292139659386949088251555634, −6.06450826353750466648866217386, −3.52314199137743227571797404234, −1.45318512148560827288835303215, 1.45318512148560827288835303215, 3.52314199137743227571797404234, 6.06450826353750466648866217386, 7.48292139659386949088251555634, 9.042382273677078234612860967986, 9.702904309423403175237025968529, 11.24976535444859459911334072796, 12.62420720661657490498070096154, 14.02558213272790024076451752766, 14.96066037683515807518789254277

Graph of the $Z$-function along the critical line