Properties

Label 2-42-1.1-c15-0-11
Degree $2$
Conductor $42$
Sign $-1$
Analytic cond. $59.9312$
Root an. cond. $7.74152$
Motivic weight $15$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 128·2-s − 2.18e3·3-s + 1.63e4·4-s + 2.96e5·5-s + 2.79e5·6-s + 8.23e5·7-s − 2.09e6·8-s + 4.78e6·9-s − 3.79e7·10-s − 7.13e6·11-s − 3.58e7·12-s − 2.36e8·13-s − 1.05e8·14-s − 6.48e8·15-s + 2.68e8·16-s − 2.33e9·17-s − 6.12e8·18-s + 7.02e8·19-s + 4.85e9·20-s − 1.80e9·21-s + 9.12e8·22-s − 1.29e10·23-s + 4.58e9·24-s + 5.73e10·25-s + 3.02e10·26-s − 1.04e10·27-s + 1.34e10·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.69·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 1.19·10-s − 0.110·11-s − 0.288·12-s − 1.04·13-s − 0.267·14-s − 0.979·15-s + 1/4·16-s − 1.38·17-s − 0.235·18-s + 0.180·19-s + 0.848·20-s − 0.218·21-s + 0.0780·22-s − 0.793·23-s + 0.204·24-s + 1.87·25-s + 0.739·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(42\)    =    \(2 \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(59.9312\)
Root analytic conductor: \(7.74152\)
Motivic weight: \(15\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 42,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{7} T \)
3 \( 1 + p^{7} T \)
7 \( 1 - p^{7} T \)
good5 \( 1 - 296442 T + p^{15} T^{2} \)
11 \( 1 + 648288 p T + p^{15} T^{2} \)
13 \( 1 + 18205834 p T + p^{15} T^{2} \)
17 \( 1 + 2335326882 T + p^{15} T^{2} \)
19 \( 1 - 702711596 T + p^{15} T^{2} \)
23 \( 1 + 12958741404 T + p^{15} T^{2} \)
29 \( 1 - 66702541614 T + p^{15} T^{2} \)
31 \( 1 + 29492707192 T + p^{15} T^{2} \)
37 \( 1 + 935632269682 T + p^{15} T^{2} \)
41 \( 1 + 1076568776178 T + p^{15} T^{2} \)
43 \( 1 - 2788495492052 T + p^{15} T^{2} \)
47 \( 1 + 4151951670984 T + p^{15} T^{2} \)
53 \( 1 - 8187896340318 T + p^{15} T^{2} \)
59 \( 1 + 17963955588252 T + p^{15} T^{2} \)
61 \( 1 - 14067282247670 T + p^{15} T^{2} \)
67 \( 1 + 91494354339484 T + p^{15} T^{2} \)
71 \( 1 - 85920788160684 T + p^{15} T^{2} \)
73 \( 1 + 123132339461662 T + p^{15} T^{2} \)
79 \( 1 + 280698219508408 T + p^{15} T^{2} \)
83 \( 1 + 45613464690684 T + p^{15} T^{2} \)
89 \( 1 - 102721846037550 T + p^{15} T^{2} \)
97 \( 1 - 1062760278868490 T + p^{15} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03648812775172499705898340459, −10.65410658860210706812701801692, −9.886061754101103176366129684298, −8.801823299085123796354736920847, −7.08445647294083872096541423873, −6.00764010405491696130859001880, −4.87234036619838256719386238068, −2.42931517165284498834443279297, −1.55369348891294452152881237507, 0, 1.55369348891294452152881237507, 2.42931517165284498834443279297, 4.87234036619838256719386238068, 6.00764010405491696130859001880, 7.08445647294083872096541423873, 8.801823299085123796354736920847, 9.886061754101103176366129684298, 10.65410658860210706812701801692, 12.03648812775172499705898340459

Graph of the $Z$-function along the critical line