L(s) = 1 | + 2·3-s − 5-s + 9-s + 2·11-s − 13-s − 2·15-s + 2·17-s + 2·19-s − 2·23-s + 25-s − 4·27-s + 6·29-s − 2·31-s + 4·33-s + 6·37-s − 2·39-s + 2·41-s + 6·43-s − 45-s + 8·47-s − 7·49-s + 4·51-s + 2·53-s − 2·55-s + 4·57-s + 6·59-s + 14·61-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.447·5-s + 1/3·9-s + 0.603·11-s − 0.277·13-s − 0.516·15-s + 0.485·17-s + 0.458·19-s − 0.417·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s − 0.359·31-s + 0.696·33-s + 0.986·37-s − 0.320·39-s + 0.312·41-s + 0.914·43-s − 0.149·45-s + 1.16·47-s − 49-s + 0.560·51-s + 0.274·53-s − 0.269·55-s + 0.529·57-s + 0.781·59-s + 1.79·61-s + ⋯ |
Λ(s)=(=(4160s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4160s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.765296059 |
L(21) |
≈ |
2.765296059 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 13 | 1+T |
good | 3 | 1−2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1−2T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1+pT2 |
| 71 | 1+10T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.411115000826089753996710903934, −7.76319041513224922753287966748, −7.22602053082602449735325415510, −6.28727870819603758957301866812, −5.43479364046733402754835461064, −4.38796175153128331239805240266, −3.73594560911583979412114290925, −2.95784688889706959154847700703, −2.18201972761241363090254415749, −0.910977372178463170757222920731,
0.910977372178463170757222920731, 2.18201972761241363090254415749, 2.95784688889706959154847700703, 3.73594560911583979412114290925, 4.38796175153128331239805240266, 5.43479364046733402754835461064, 6.28727870819603758957301866812, 7.22602053082602449735325415510, 7.76319041513224922753287966748, 8.411115000826089753996710903934