Properties

Label 2-4160-1.1-c1-0-36
Degree $2$
Conductor $4160$
Sign $1$
Analytic cond. $33.2177$
Root an. cond. $5.76348$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 9-s + 2·11-s − 13-s − 2·15-s + 2·17-s + 2·19-s − 2·23-s + 25-s − 4·27-s + 6·29-s − 2·31-s + 4·33-s + 6·37-s − 2·39-s + 2·41-s + 6·43-s − 45-s + 8·47-s − 7·49-s + 4·51-s + 2·53-s − 2·55-s + 4·57-s + 6·59-s + 14·61-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1/3·9-s + 0.603·11-s − 0.277·13-s − 0.516·15-s + 0.485·17-s + 0.458·19-s − 0.417·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s − 0.359·31-s + 0.696·33-s + 0.986·37-s − 0.320·39-s + 0.312·41-s + 0.914·43-s − 0.149·45-s + 1.16·47-s − 49-s + 0.560·51-s + 0.274·53-s − 0.269·55-s + 0.529·57-s + 0.781·59-s + 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4160\)    =    \(2^{6} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(33.2177\)
Root analytic conductor: \(5.76348\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.765296059\)
\(L(\frac12)\) \(\approx\) \(2.765296059\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.411115000826089753996710903934, −7.76319041513224922753287966748, −7.22602053082602449735325415510, −6.28727870819603758957301866812, −5.43479364046733402754835461064, −4.38796175153128331239805240266, −3.73594560911583979412114290925, −2.95784688889706959154847700703, −2.18201972761241363090254415749, −0.910977372178463170757222920731, 0.910977372178463170757222920731, 2.18201972761241363090254415749, 2.95784688889706959154847700703, 3.73594560911583979412114290925, 4.38796175153128331239805240266, 5.43479364046733402754835461064, 6.28727870819603758957301866812, 7.22602053082602449735325415510, 7.76319041513224922753287966748, 8.411115000826089753996710903934

Graph of the $Z$-function along the critical line