L(s) = 1 | − 2i·3-s − 3.46i·5-s + 4.73·7-s − 9-s + 1.26i·11-s + i·13-s − 6.92·15-s − 1.46·17-s + 2.73i·19-s − 9.46i·21-s − 4·23-s − 6.99·25-s − 4i·27-s + 2i·29-s + 3.26·31-s + ⋯ |
L(s) = 1 | − 1.15i·3-s − 1.54i·5-s + 1.78·7-s − 0.333·9-s + 0.382i·11-s + 0.277i·13-s − 1.78·15-s − 0.355·17-s + 0.626i·19-s − 2.06i·21-s − 0.834·23-s − 1.39·25-s − 0.769i·27-s + 0.371i·29-s + 0.586·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.258+0.965i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.258+0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.258+0.965i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.258+0.965i)
|
Particular Values
L(1) |
≈ |
0.987792−1.28731i |
L(21) |
≈ |
0.987792−1.28731i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−iT |
good | 3 | 1+2iT−3T2 |
| 5 | 1+3.46iT−5T2 |
| 7 | 1−4.73T+7T2 |
| 11 | 1−1.26iT−11T2 |
| 17 | 1+1.46T+17T2 |
| 19 | 1−2.73iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1−3.26T+31T2 |
| 37 | 1−4.92iT−37T2 |
| 41 | 1+4.92T+41T2 |
| 43 | 1−7.46iT−43T2 |
| 47 | 1+3.26T+47T2 |
| 53 | 1−10.9iT−53T2 |
| 59 | 1+0.196iT−59T2 |
| 61 | 1+10.9iT−61T2 |
| 67 | 1−2.73iT−67T2 |
| 71 | 1+2.19T+71T2 |
| 73 | 1+0.535T+73T2 |
| 79 | 1−1.46T+79T2 |
| 83 | 1+6.73iT−83T2 |
| 89 | 1−17.3T+89T2 |
| 97 | 1+14.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.31612240228864407876460987867, −9.972408185142455694800867205414, −8.744082584547826445155678671743, −8.131188689436848486045260496386, −7.53917559313879621791417810081, −6.19942722935809631447847378801, −4.98462993962920393861146330572, −4.38201926300298958803600849563, −1.91365119986622245651772896758, −1.25787348341261807773421410633,
2.22449239575256709356198648105, 3.57585239248970004918043916706, 4.56341897588010696309581687180, 5.55997228536087349195201798109, 6.86174036002332583599412977952, 7.83355508684672240742556567360, 8.758831745200813004232375446695, 9.998905142741516134238077626976, 10.64073027091680827405028239155, 11.18347939226068674769171128578