L(s) = 1 | − i·3-s − 3i·5-s − 3·7-s + 2·9-s − i·13-s − 3·15-s − 7·17-s − 4i·19-s + 3i·21-s − 4·23-s − 4·25-s − 5i·27-s + 4i·29-s + 8·31-s + 9i·35-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 1.34i·5-s − 1.13·7-s + 0.666·9-s − 0.277i·13-s − 0.774·15-s − 1.69·17-s − 0.917i·19-s + 0.654i·21-s − 0.834·23-s − 0.800·25-s − 0.962i·27-s + 0.742i·29-s + 1.43·31-s + 1.52i·35-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.707+0.707i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.707+0.707i)
|
Particular Values
L(1) |
≈ |
0.389250−0.939732i |
L(21) |
≈ |
0.389250−0.939732i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+iT |
good | 3 | 1+iT−3T2 |
| 5 | 1+3iT−5T2 |
| 7 | 1+3T+7T2 |
| 11 | 1−11T2 |
| 17 | 1+7T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−4iT−29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1+7iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+iT−43T2 |
| 47 | 1−7T+47T2 |
| 53 | 1+4iT−53T2 |
| 59 | 1+14iT−59T2 |
| 61 | 1−10iT−61T2 |
| 67 | 1−2iT−67T2 |
| 71 | 1−3T+71T2 |
| 73 | 1−14T+73T2 |
| 79 | 1−10T+79T2 |
| 83 | 1−14iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88697112495268797091923845999, −9.752886466224685561337253962274, −9.067145886263812370717231823172, −8.212080707638445255604324338111, −7.00977517809252333308656063861, −6.29294867830547392975854592743, −4.96686704061183388838479542014, −4.01260748526645672830388922689, −2.29119443694623589441939074338, −0.64360083432287352970178500465,
2.41091872202386334518782012665, 3.56791279260911188479866218575, 4.46974671565504062997968650541, 6.25777464968427212796214593142, 6.61711645796808404555812741294, 7.73026060178007962197194849978, 9.089775066662220953126225337654, 10.01564076271265384887889462698, 10.38826353783580439289590554285, 11.36169354213970672628326571399