L(s) = 1 | − 2i·3-s + (−1 − i)5-s + (−1 − i)7-s − 9-s + (−3 − 3i)11-s + (−3 + 2i)13-s + (−2 + 2i)15-s + 4i·17-s + (3 − 3i)19-s + (−2 + 2i)21-s − 3i·25-s − 4i·27-s − 6·29-s + (−3 + 3i)31-s + (−6 + 6i)33-s + ⋯ |
L(s) = 1 | − 1.15i·3-s + (−0.447 − 0.447i)5-s + (−0.377 − 0.377i)7-s − 0.333·9-s + (−0.904 − 0.904i)11-s + (−0.832 + 0.554i)13-s + (−0.516 + 0.516i)15-s + 0.970i·17-s + (0.688 − 0.688i)19-s + (−0.436 + 0.436i)21-s − 0.600i·25-s − 0.769i·27-s − 1.11·29-s + (−0.538 + 0.538i)31-s + (−1.04 + 1.04i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.123168 - 0.831835i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.123168 - 0.831835i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3 - 2i)T \) |
good | 3 | \( 1 + 2iT - 3T^{2} \) |
| 5 | \( 1 + (1 + i)T + 5iT^{2} \) |
| 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 11 | \( 1 + (3 + 3i)T + 11iT^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 + (-3 + 3i)T - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 + (3 - 3i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3 + 3i)T - 37iT^{2} \) |
| 41 | \( 1 + (-1 - i)T + 41iT^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (5 + 5i)T + 47iT^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (7 + 7i)T + 59iT^{2} \) |
| 61 | \( 1 - 14T + 61T^{2} \) |
| 67 | \( 1 + (5 - 5i)T - 67iT^{2} \) |
| 71 | \( 1 + (-5 + 5i)T - 71iT^{2} \) |
| 73 | \( 1 + (-9 + 9i)T - 73iT^{2} \) |
| 79 | \( 1 - 6iT - 79T^{2} \) |
| 83 | \( 1 + (-7 + 7i)T - 83iT^{2} \) |
| 89 | \( 1 + (-5 + 5i)T - 89iT^{2} \) |
| 97 | \( 1 + (-13 - 13i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96173750481516300347425184576, −9.905592884860998882103158672412, −8.758970292404432880813068789228, −7.85093021649198076209079208680, −7.21131729277581123489759950423, −6.21889772051936640913666958750, −5.04094630012188367036566922776, −3.67356029911679108549950133231, −2.18834617534372465151181343882, −0.52370447396557550538899867305,
2.61021113341454942397550605695, 3.66367831139067676831793992606, 4.84364698487181914157644063694, 5.58941928845342107136503117268, 7.22634437943545366626965811223, 7.76391438211159487140878230787, 9.365098295939244004374170985556, 9.731584454989350587810646422209, 10.58697352281184241312716992204, 11.43944022927050098461517154926