L(s) = 1 | − 2i·3-s + (−1 − i)5-s + (−1 − i)7-s − 9-s + (−3 − 3i)11-s + (−3 + 2i)13-s + (−2 + 2i)15-s + 4i·17-s + (3 − 3i)19-s + (−2 + 2i)21-s − 3i·25-s − 4i·27-s − 6·29-s + (−3 + 3i)31-s + (−6 + 6i)33-s + ⋯ |
L(s) = 1 | − 1.15i·3-s + (−0.447 − 0.447i)5-s + (−0.377 − 0.377i)7-s − 0.333·9-s + (−0.904 − 0.904i)11-s + (−0.832 + 0.554i)13-s + (−0.516 + 0.516i)15-s + 0.970i·17-s + (0.688 − 0.688i)19-s + (−0.436 + 0.436i)21-s − 0.600i·25-s − 0.769i·27-s − 1.11·29-s + (−0.538 + 0.538i)31-s + (−1.04 + 1.04i)33-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.957+0.289i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.957+0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.957+0.289i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(255,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.957+0.289i)
|
Particular Values
L(1) |
≈ |
0.123168−0.831835i |
L(21) |
≈ |
0.123168−0.831835i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(3−2i)T |
good | 3 | 1+2iT−3T2 |
| 5 | 1+(1+i)T+5iT2 |
| 7 | 1+(1+i)T+7iT2 |
| 11 | 1+(3+3i)T+11iT2 |
| 17 | 1−4iT−17T2 |
| 19 | 1+(−3+3i)T−19iT2 |
| 23 | 1+23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1+(3−3i)T−31iT2 |
| 37 | 1+(−3+3i)T−37iT2 |
| 41 | 1+(−1−i)T+41iT2 |
| 43 | 1−4T+43T2 |
| 47 | 1+(5+5i)T+47iT2 |
| 53 | 1−6T+53T2 |
| 59 | 1+(7+7i)T+59iT2 |
| 61 | 1−14T+61T2 |
| 67 | 1+(5−5i)T−67iT2 |
| 71 | 1+(−5+5i)T−71iT2 |
| 73 | 1+(−9+9i)T−73iT2 |
| 79 | 1−6iT−79T2 |
| 83 | 1+(−7+7i)T−83iT2 |
| 89 | 1+(−5+5i)T−89iT2 |
| 97 | 1+(−13−13i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96173750481516300347425184576, −9.905592884860998882103158672412, −8.758970292404432880813068789228, −7.85093021649198076209079208680, −7.21131729277581123489759950423, −6.21889772051936640913666958750, −5.04094630012188367036566922776, −3.67356029911679108549950133231, −2.18834617534372465151181343882, −0.52370447396557550538899867305,
2.61021113341454942397550605695, 3.66367831139067676831793992606, 4.84364698487181914157644063694, 5.58941928845342107136503117268, 7.22634437943545366626965811223, 7.76391438211159487140878230787, 9.365098295939244004374170985556, 9.731584454989350587810646422209, 10.58697352281184241312716992204, 11.43944022927050098461517154926