L(s) = 1 | + (−0.988 + 1.01i)2-s + (0.708 − 1.71i)3-s + (−0.0474 − 1.99i)4-s + (0.188 + 0.454i)5-s + (1.03 + 2.40i)6-s + (0.461 + 0.461i)7-s + (2.06 + 1.92i)8-s + (−0.301 − 0.301i)9-s + (−0.645 − 0.258i)10-s + (1.38 − 0.572i)11-s + (−3.45 − 1.33i)12-s + (2.41 + 2.67i)13-s + (−0.923 + 0.0109i)14-s + 0.910·15-s + (−3.99 + 0.189i)16-s − 1.70i·17-s + ⋯ |
L(s) = 1 | + (−0.698 + 0.715i)2-s + (0.408 − 0.987i)3-s + (−0.0237 − 0.999i)4-s + (0.0842 + 0.203i)5-s + (0.420 + 0.982i)6-s + (0.174 + 0.174i)7-s + (0.731 + 0.681i)8-s + (−0.100 − 0.100i)9-s + (−0.204 − 0.0817i)10-s + (0.416 − 0.172i)11-s + (−0.996 − 0.385i)12-s + (0.670 + 0.741i)13-s + (−0.246 + 0.00292i)14-s + 0.235·15-s + (−0.998 + 0.0474i)16-s − 0.413i·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.982+0.186i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.982+0.186i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.982+0.186i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.982+0.186i)
|
Particular Values
L(1) |
≈ |
1.22214−0.114886i |
L(21) |
≈ |
1.22214−0.114886i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.988−1.01i)T |
| 13 | 1+(−2.41−2.67i)T |
good | 3 | 1+(−0.708+1.71i)T+(−2.12−2.12i)T2 |
| 5 | 1+(−0.188−0.454i)T+(−3.53+3.53i)T2 |
| 7 | 1+(−0.461−0.461i)T+7iT2 |
| 11 | 1+(−1.38+0.572i)T+(7.77−7.77i)T2 |
| 17 | 1+1.70iT−17T2 |
| 19 | 1+(−1.71+4.14i)T+(−13.4−13.4i)T2 |
| 23 | 1+(0.296+0.296i)T+23iT2 |
| 29 | 1+(0.673−1.62i)T+(−20.5−20.5i)T2 |
| 31 | 1+5.90iT−31T2 |
| 37 | 1+(1.12+2.70i)T+(−26.1+26.1i)T2 |
| 41 | 1+(6.52−6.52i)T−41iT2 |
| 43 | 1+(0.359+0.867i)T+(−30.4+30.4i)T2 |
| 47 | 1−2.98T+47T2 |
| 53 | 1+(−4.36−10.5i)T+(−37.4+37.4i)T2 |
| 59 | 1+(−3.83−9.25i)T+(−41.7+41.7i)T2 |
| 61 | 1+(3.18−7.69i)T+(−43.1−43.1i)T2 |
| 67 | 1+(3.91+1.61i)T+(47.3+47.3i)T2 |
| 71 | 1+(−3.34−3.34i)T+71iT2 |
| 73 | 1+(7.51−7.51i)T−73iT2 |
| 79 | 1−2.03iT−79T2 |
| 83 | 1+(−0.942+2.27i)T+(−58.6−58.6i)T2 |
| 89 | 1+(8.61+8.61i)T+89iT2 |
| 97 | 1+12.2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15127337385058209273504429190, −10.09929704853876231230530183202, −8.987658755549027064281887443683, −8.470212735133976992246101536012, −7.33459095602722421818548040953, −6.82958385175513779912473916956, −5.85355052047600230891143403635, −4.49506712798101561178187196677, −2.50758024008050730119770070165, −1.21323183950682249797627040483,
1.44188101091527142379886141606, 3.25760406126560837113114167055, 3.91232153343888182658347863929, 5.14902960430581636287445597482, 6.74534173821553678015793080185, 7.993387877146409583040427118531, 8.735241869702819604437237956362, 9.521851260919626720520068105664, 10.31564953504057592368739429077, 10.86186295799140824890276793147