L(s) = 1 | + (−1.31 + 0.510i)2-s + (0.324 − 0.782i)3-s + (1.47 − 1.34i)4-s + (0.174 + 0.420i)5-s + (−0.0279 + 1.19i)6-s + (2.63 + 2.63i)7-s + (−1.26 + 2.53i)8-s + (1.61 + 1.61i)9-s + (−0.444 − 0.465i)10-s + (−2.03 + 0.842i)11-s + (−0.574 − 1.59i)12-s + (−2.76 − 2.31i)13-s + (−4.81 − 2.12i)14-s + 0.385·15-s + (0.373 − 3.98i)16-s + 4.77i·17-s + ⋯ |
L(s) = 1 | + (−0.932 + 0.360i)2-s + (0.187 − 0.451i)3-s + (0.739 − 0.673i)4-s + (0.0778 + 0.187i)5-s + (−0.0114 + 0.488i)6-s + (0.995 + 0.995i)7-s + (−0.446 + 0.894i)8-s + (0.538 + 0.538i)9-s + (−0.140 − 0.147i)10-s + (−0.613 + 0.254i)11-s + (−0.165 − 0.459i)12-s + (−0.765 − 0.643i)13-s + (−1.28 − 0.568i)14-s + 0.0994·15-s + (0.0933 − 0.995i)16-s + 1.15i·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.580−0.814i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.580−0.814i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.580−0.814i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.580−0.814i)
|
Particular Values
L(1) |
≈ |
0.932958+0.480560i |
L(21) |
≈ |
0.932958+0.480560i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.31−0.510i)T |
| 13 | 1+(2.76+2.31i)T |
good | 3 | 1+(−0.324+0.782i)T+(−2.12−2.12i)T2 |
| 5 | 1+(−0.174−0.420i)T+(−3.53+3.53i)T2 |
| 7 | 1+(−2.63−2.63i)T+7iT2 |
| 11 | 1+(2.03−0.842i)T+(7.77−7.77i)T2 |
| 17 | 1−4.77iT−17T2 |
| 19 | 1+(0.598−1.44i)T+(−13.4−13.4i)T2 |
| 23 | 1+(−3.12−3.12i)T+23iT2 |
| 29 | 1+(1.02−2.47i)T+(−20.5−20.5i)T2 |
| 31 | 1−1.90iT−31T2 |
| 37 | 1+(2.32+5.61i)T+(−26.1+26.1i)T2 |
| 41 | 1+(−2.95+2.95i)T−41iT2 |
| 43 | 1+(−4.00−9.66i)T+(−30.4+30.4i)T2 |
| 47 | 1−1.36T+47T2 |
| 53 | 1+(0.464+1.12i)T+(−37.4+37.4i)T2 |
| 59 | 1+(−0.498−1.20i)T+(−41.7+41.7i)T2 |
| 61 | 1+(−3.55+8.57i)T+(−43.1−43.1i)T2 |
| 67 | 1+(−7.70−3.19i)T+(47.3+47.3i)T2 |
| 71 | 1+(9.25+9.25i)T+71iT2 |
| 73 | 1+(−10.4+10.4i)T−73iT2 |
| 79 | 1+1.42iT−79T2 |
| 83 | 1+(4.61−11.1i)T+(−58.6−58.6i)T2 |
| 89 | 1+(5.78+5.78i)T+89iT2 |
| 97 | 1+9.17iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98400193997475920133298165407, −10.50095928790751261219471866027, −9.422933151520359080559142677395, −8.330529324677037419726373152451, −7.87673964788035726621938233810, −6.98324414203059736353295124834, −5.71603885271011729772341609745, −4.90712649601190569219547259059, −2.60115287358147544115837895481, −1.67500491566344341712099176199,
0.976107232010067268318660425407, 2.61623853066820194243635591961, 4.05793620258765451436399181766, 4.99768094966376238468077017643, 6.90254466857108773226776792193, 7.39641088510646886575445938060, 8.519111416202564210592424520651, 9.351796731429093648189992587138, 10.12209437912093059011656228234, 10.92095638208681322079427104263