L(s) = 1 | + (−0.493 + 1.32i)2-s + (1.01 − 0.419i)3-s + (−1.51 − 1.30i)4-s + (−1.26 + 3.06i)5-s + (0.0562 + 1.54i)6-s + (−0.757 − 0.757i)7-s + (2.48 − 1.35i)8-s + (−1.27 + 1.27i)9-s + (−3.43 − 3.19i)10-s + (−5.35 − 2.21i)11-s + (−2.08 − 0.690i)12-s + (0.382 + 0.923i)13-s + (1.37 − 0.629i)14-s + 3.63i·15-s + (0.578 + 3.95i)16-s + 4.42i·17-s + ⋯ |
L(s) = 1 | + (−0.348 + 0.937i)2-s + (0.584 − 0.242i)3-s + (−0.756 − 0.653i)4-s + (−0.566 + 1.36i)5-s + (0.0229 + 0.632i)6-s + (−0.286 − 0.286i)7-s + (0.876 − 0.480i)8-s + (−0.423 + 0.423i)9-s + (−1.08 − 1.00i)10-s + (−1.61 − 0.668i)11-s + (−0.600 − 0.199i)12-s + (0.106 + 0.256i)13-s + (0.367 − 0.168i)14-s + 0.937i·15-s + (0.144 + 0.989i)16-s + 1.07i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0879250 - 0.459892i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0879250 - 0.459892i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.493 - 1.32i)T \) |
| 13 | \( 1 + (-0.382 - 0.923i)T \) |
good | 3 | \( 1 + (-1.01 + 0.419i)T + (2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (1.26 - 3.06i)T + (-3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (0.757 + 0.757i)T + 7iT^{2} \) |
| 11 | \( 1 + (5.35 + 2.21i)T + (7.77 + 7.77i)T^{2} \) |
| 17 | \( 1 - 4.42iT - 17T^{2} \) |
| 19 | \( 1 + (1.84 + 4.46i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (2.30 - 2.30i)T - 23iT^{2} \) |
| 29 | \( 1 + (-4.83 + 2.00i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + 2.03T + 31T^{2} \) |
| 37 | \( 1 + (1.25 - 3.03i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (7.20 - 7.20i)T - 41iT^{2} \) |
| 43 | \( 1 + (2.37 + 0.981i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 - 3.59iT - 47T^{2} \) |
| 53 | \( 1 + (-9.03 - 3.74i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-1.81 + 4.37i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-4.32 + 1.79i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (-6.15 + 2.54i)T + (47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (-5.53 - 5.53i)T + 71iT^{2} \) |
| 73 | \( 1 + (8.59 - 8.59i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.19iT - 79T^{2} \) |
| 83 | \( 1 + (-3.96 - 9.56i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (-2.57 - 2.57i)T + 89iT^{2} \) |
| 97 | \( 1 + 4.78T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.32839242029512589671728080924, −10.65115824466677835446296839801, −9.983271835239808889002705531672, −8.457197005507111537124567492106, −8.095477695592259499108866134250, −7.16622256602311584914925553112, −6.38306658998642634088034468107, −5.21676614227267917731834353907, −3.67779506186302128395467432611, −2.54459557777677910376080298925,
0.29847046513722889623685218790, 2.28488471449049277310502117920, 3.45510735130441537155695621354, 4.59090305386043785297689449930, 5.45179514737022286917168761577, 7.49976564861194469419294701260, 8.395470082705262008465803432532, 8.791590954287980799698199829369, 9.814633187374381444352115199929, 10.49370001985986048820024276384