L(s) = 1 | + 4.46·5-s + (1.5 + 2.59i)9-s + (−3.23 + 1.59i)13-s + (−2.96 − 5.13i)17-s + 14.9·25-s + (−0.767 + 1.33i)29-s + (−5.69 + 9.86i)37-s + (5.96 − 10.3i)41-s + (6.69 + 11.5i)45-s + (3.5 − 6.06i)49-s − 3.53·53-s + (−7.69 − 13.3i)61-s + (−14.4 + 7.13i)65-s − 10.8·73-s + (−4.5 + 7.79i)81-s + ⋯ |
L(s) = 1 | + 1.99·5-s + (0.5 + 0.866i)9-s + (−0.896 + 0.443i)13-s + (−0.718 − 1.24i)17-s + 2.98·25-s + (−0.142 + 0.246i)29-s + (−0.936 + 1.62i)37-s + (0.931 − 1.61i)41-s + (0.998 + 1.72i)45-s + (0.5 − 0.866i)49-s − 0.485·53-s + (−0.985 − 1.70i)61-s + (−1.78 + 0.884i)65-s − 1.27·73-s + (−0.5 + 0.866i)81-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.981−0.189i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.981−0.189i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.981−0.189i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(321,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.981−0.189i)
|
Particular Values
L(1) |
≈ |
1.84949+0.177150i |
L(21) |
≈ |
1.84949+0.177150i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(3.23−1.59i)T |
good | 3 | 1+(−1.5−2.59i)T2 |
| 5 | 1−4.46T+5T2 |
| 7 | 1+(−3.5+6.06i)T2 |
| 11 | 1+(−5.5−9.52i)T2 |
| 17 | 1+(2.96+5.13i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−9.5+16.4i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(0.767−1.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+31T2 |
| 37 | 1+(5.69−9.86i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−5.96+10.3i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−21.5+37.2i)T2 |
| 47 | 1+47T2 |
| 53 | 1+3.53T+53T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(7.69+13.3i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−33.5−58.0i)T2 |
| 71 | 1+(−35.5+61.4i)T2 |
| 73 | 1+10.8T+73T2 |
| 79 | 1+79T2 |
| 83 | 1+83T2 |
| 89 | 1+(5−8.66i)T+(−44.5−77.0i)T2 |
| 97 | 1+(9+15.5i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00349800252223220338889326889, −10.17906569591599664136860016188, −9.560763677699288361840039651690, −8.790906528279219755841431238019, −7.29225986188843574284946001380, −6.56546368161579126123375522011, −5.34646869418283280224301128829, −4.75217347570088163709179678261, −2.64965181453340557889179221113, −1.79290543314879756681242465962,
1.55645804680609255556160859075, 2.73588033518958669744182930141, 4.39491055892099830466380941802, 5.67140035079707015491724778430, 6.26975979927335576912515009282, 7.26904459171443857326305880975, 8.769313739828517293082285312918, 9.479259206124106537865589622193, 10.15226851265646105006239828246, 10.88557293000375298828973814736