L(s) = 1 | + (−1 − 1.73i)3-s + 5-s + (−0.499 + 0.866i)9-s + (−2 − 3.46i)11-s + (2.5 − 2.59i)13-s + (−1 − 1.73i)15-s + (−1.5 + 2.59i)17-s + (1 − 1.73i)19-s + (−1 − 1.73i)23-s − 4·25-s − 4.00·27-s + (−2.5 − 4.33i)29-s + 2·31-s + (−3.99 + 6.92i)33-s + (−2.5 − 4.33i)37-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.999i)3-s + 0.447·5-s + (−0.166 + 0.288i)9-s + (−0.603 − 1.04i)11-s + (0.693 − 0.720i)13-s + (−0.258 − 0.447i)15-s + (−0.363 + 0.630i)17-s + (0.229 − 0.397i)19-s + (−0.208 − 0.361i)23-s − 0.800·25-s − 0.769·27-s + (−0.464 − 0.804i)29-s + 0.359·31-s + (−0.696 + 1.20i)33-s + (−0.410 − 0.711i)37-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.477+0.878i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.477+0.878i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.477+0.878i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.477+0.878i)
|
Particular Values
L(1) |
≈ |
0.542525−0.912455i |
L(21) |
≈ |
0.542525−0.912455i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−2.5+2.59i)T |
good | 3 | 1+(1+1.73i)T+(−1.5+2.59i)T2 |
| 5 | 1−T+5T2 |
| 7 | 1+(−3.5−6.06i)T2 |
| 11 | 1+(2+3.46i)T+(−5.5+9.52i)T2 |
| 17 | 1+(1.5−2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1+1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1+1.73i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.5+4.33i)T+(−14.5+25.1i)T2 |
| 31 | 1−2T+31T2 |
| 37 | 1+(2.5+4.33i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2+3.46i)T+(−21.5−37.2i)T2 |
| 47 | 1−6T+47T2 |
| 53 | 1−13T+53T2 |
| 59 | 1+(6−10.3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.5+6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−7−12.1i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3−5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1−7T+73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1−4T+83T2 |
| 89 | 1+(7+12.1i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−1+1.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98322650556110006452846065851, −10.24188008281258316411059250208, −8.943373161667052862379020486968, −8.057165138715353796603730874785, −7.11200806205607986272802979645, −5.93636381038984198334203286701, −5.67612001872800744029860585719, −3.85092699556815660406124571196, −2.31192757469160141331754803335, −0.74079073947940448674303916649,
2.01982745446997270784132451189, 3.76521666680915787686574047205, 4.78933096749039358130717592127, 5.55272950821372477571782559729, 6.71005873146354384170307873527, 7.80572251307510414354091038004, 9.133719478554666529755097779734, 9.818620437023757232388838948827, 10.49968898232328623053280887750, 11.36303698360904672155054736461