L(s) = 1 | + (−0.619 − 1.07i)3-s − 2i·5-s + (4.00 + 2.31i)7-s + (0.732 − 1.26i)9-s + (−1.85 + 1.07i)11-s + (−1 − 3.46i)13-s + (−2.14 + 1.23i)15-s + (0.232 − 0.401i)17-s + (4.00 + 2.31i)19-s − 5.73i·21-s + (−2.76 − 4.79i)23-s + 25-s − 5.53·27-s + (−1.5 − 2.59i)29-s − 9.25i·31-s + ⋯ |
L(s) = 1 | + (−0.357 − 0.619i)3-s − 0.894i·5-s + (1.51 + 0.874i)7-s + (0.244 − 0.422i)9-s + (−0.560 + 0.323i)11-s + (−0.277 − 0.960i)13-s + (−0.554 + 0.319i)15-s + (0.0562 − 0.0974i)17-s + (0.918 + 0.530i)19-s − 1.25i·21-s + (−0.576 − 0.999i)23-s + 0.200·25-s − 1.06·27-s + (−0.278 − 0.482i)29-s − 1.66i·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.265+0.964i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.265+0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.265+0.964i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.265+0.964i)
|
Particular Values
L(1) |
≈ |
1.09835−0.837218i |
L(21) |
≈ |
1.09835−0.837218i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(1+3.46i)T |
good | 3 | 1+(0.619+1.07i)T+(−1.5+2.59i)T2 |
| 5 | 1+2iT−5T2 |
| 7 | 1+(−4.00−2.31i)T+(3.5+6.06i)T2 |
| 11 | 1+(1.85−1.07i)T+(5.5−9.52i)T2 |
| 17 | 1+(−0.232+0.401i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.00−2.31i)T+(9.5+16.4i)T2 |
| 23 | 1+(2.76+4.79i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.5+2.59i)T+(−14.5+25.1i)T2 |
| 31 | 1+9.25iT−31T2 |
| 37 | 1+(−6.69+3.86i)T+(18.5−32.0i)T2 |
| 41 | 1+(6.23−3.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.85−3.21i)T+(−21.5−37.2i)T2 |
| 47 | 1−11.7iT−47T2 |
| 53 | 1−2.53T+53T2 |
| 59 | 1+(−8.29−4.79i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.5−2.59i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.00−2.31i)T+(33.5−58.0i)T2 |
| 71 | 1+(5.57+3.21i)T+(35.5+61.4i)T2 |
| 73 | 1−6iT−73T2 |
| 79 | 1−4.29T+79T2 |
| 83 | 1−4.29iT−83T2 |
| 89 | 1+(1.03−0.598i)T+(44.5−77.0i)T2 |
| 97 | 1+(−11.8−6.86i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35408886688630642585445331334, −10.08806398786797250892964511995, −9.113259503956614243682656895656, −7.990518267979334447046074562532, −7.69664714416624774970310076032, −6.03428051545010489667513317975, −5.30890435539017129260970331786, −4.38956819989534543368259184009, −2.39144556708733591034295391988, −1.05325020756801103424235098021,
1.79651805371411852427655471626, 3.50126727094041095816937563672, 4.69965266893849253746246853253, 5.33040217324317127803146178408, 6.97660760018063334746861857320, 7.52225638566090454891065034108, 8.603453937559120483965508278068, 9.982815536599453991414719852995, 10.55134966998982832198447014208, 11.27457946594644196168254246240