L(s) = 1 | + (−0.619 − 1.07i)3-s − 2i·5-s + (4.00 + 2.31i)7-s + (0.732 − 1.26i)9-s + (−1.85 + 1.07i)11-s + (−1 − 3.46i)13-s + (−2.14 + 1.23i)15-s + (0.232 − 0.401i)17-s + (4.00 + 2.31i)19-s − 5.73i·21-s + (−2.76 − 4.79i)23-s + 25-s − 5.53·27-s + (−1.5 − 2.59i)29-s − 9.25i·31-s + ⋯ |
L(s) = 1 | + (−0.357 − 0.619i)3-s − 0.894i·5-s + (1.51 + 0.874i)7-s + (0.244 − 0.422i)9-s + (−0.560 + 0.323i)11-s + (−0.277 − 0.960i)13-s + (−0.554 + 0.319i)15-s + (0.0562 − 0.0974i)17-s + (0.918 + 0.530i)19-s − 1.25i·21-s + (−0.576 − 0.999i)23-s + 0.200·25-s − 1.06·27-s + (−0.278 − 0.482i)29-s − 1.66i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09835 - 0.837218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09835 - 0.837218i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 3 | \( 1 + (0.619 + 1.07i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 + (-4.00 - 2.31i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.85 - 1.07i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.232 + 0.401i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.00 - 2.31i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.76 + 4.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 9.25iT - 31T^{2} \) |
| 37 | \( 1 + (-6.69 + 3.86i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (6.23 - 3.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.85 - 3.21i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 11.7iT - 47T^{2} \) |
| 53 | \( 1 - 2.53T + 53T^{2} \) |
| 59 | \( 1 + (-8.29 - 4.79i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 - 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.00 - 2.31i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.57 + 3.21i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 - 4.29T + 79T^{2} \) |
| 83 | \( 1 - 4.29iT - 83T^{2} \) |
| 89 | \( 1 + (1.03 - 0.598i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11.8 - 6.86i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35408886688630642585445331334, −10.08806398786797250892964511995, −9.113259503956614243682656895656, −7.990518267979334447046074562532, −7.69664714416624774970310076032, −6.03428051545010489667513317975, −5.30890435539017129260970331786, −4.38956819989534543368259184009, −2.39144556708733591034295391988, −1.05325020756801103424235098021,
1.79651805371411852427655471626, 3.50126727094041095816937563672, 4.69965266893849253746246853253, 5.33040217324317127803146178408, 6.97660760018063334746861857320, 7.52225638566090454891065034108, 8.603453937559120483965508278068, 9.982815536599453991414719852995, 10.55134966998982832198447014208, 11.27457946594644196168254246240