L(s) = 1 | − 3-s + 5-s − 3·7-s − 2·9-s − 2·11-s + 13-s − 15-s − 3·17-s − 2·19-s + 3·21-s − 4·23-s − 4·25-s + 5·27-s + 2·29-s − 4·31-s + 2·33-s − 3·35-s + 5·37-s − 39-s − 12·41-s − 7·43-s − 2·45-s + 9·47-s + 2·49-s + 3·51-s + 4·53-s − 2·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s − 1.13·7-s − 2/3·9-s − 0.603·11-s + 0.277·13-s − 0.258·15-s − 0.727·17-s − 0.458·19-s + 0.654·21-s − 0.834·23-s − 4/5·25-s + 0.962·27-s + 0.371·29-s − 0.718·31-s + 0.348·33-s − 0.507·35-s + 0.821·37-s − 0.160·39-s − 1.87·41-s − 1.06·43-s − 0.298·45-s + 1.31·47-s + 2/7·49-s + 0.420·51-s + 0.549·53-s − 0.269·55-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−T |
good | 3 | 1+T+pT2 |
| 5 | 1−T+pT2 |
| 7 | 1+3T+pT2 |
| 11 | 1+2T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−5T+pT2 |
| 41 | 1+12T+pT2 |
| 43 | 1+7T+pT2 |
| 47 | 1−9T+pT2 |
| 53 | 1−4T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1−10T+pT2 |
| 71 | 1−15T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69730552679748697536416998477, −9.976912614651428361493366785064, −9.039528016718973273192662402272, −8.052297265441174562544922743090, −6.65408062467448396251062225874, −6.08119338191936199705626075673, −5.12564549383277447468893363985, −3.64849442843249490400769039530, −2.34351544305748892558428024728, 0,
2.34351544305748892558428024728, 3.64849442843249490400769039530, 5.12564549383277447468893363985, 6.08119338191936199705626075673, 6.65408062467448396251062225874, 8.052297265441174562544922743090, 9.039528016718973273192662402272, 9.976912614651428361493366785064, 10.69730552679748697536416998477