Properties

Label 2-415-1.1-c1-0-7
Degree $2$
Conductor $415$
Sign $1$
Analytic cond. $3.31379$
Root an. cond. $1.82038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.89·2-s − 3.30·3-s + 1.60·4-s + 5-s − 6.26·6-s + 1.63·7-s − 0.744·8-s + 7.89·9-s + 1.89·10-s + 0.589·11-s − 5.30·12-s + 4.93·13-s + 3.10·14-s − 3.30·15-s − 4.63·16-s + 5.34·17-s + 14.9·18-s + 1.04·19-s + 1.60·20-s − 5.38·21-s + 1.12·22-s − 2.14·23-s + 2.45·24-s + 25-s + 9.37·26-s − 16.1·27-s + 2.62·28-s + ⋯
L(s)  = 1  + 1.34·2-s − 1.90·3-s + 0.804·4-s + 0.447·5-s − 2.55·6-s + 0.617·7-s − 0.263·8-s + 2.63·9-s + 0.600·10-s + 0.177·11-s − 1.53·12-s + 1.36·13-s + 0.828·14-s − 0.852·15-s − 1.15·16-s + 1.29·17-s + 3.53·18-s + 0.239·19-s + 0.359·20-s − 1.17·21-s + 0.238·22-s − 0.448·23-s + 0.501·24-s + 0.200·25-s + 1.83·26-s − 3.10·27-s + 0.496·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 415 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 415 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(415\)    =    \(5 \cdot 83\)
Sign: $1$
Analytic conductor: \(3.31379\)
Root analytic conductor: \(1.82038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 415,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.780774856\)
\(L(\frac12)\) \(\approx\) \(1.780774856\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
83 \( 1 + T \)
good2 \( 1 - 1.89T + 2T^{2} \)
3 \( 1 + 3.30T + 3T^{2} \)
7 \( 1 - 1.63T + 7T^{2} \)
11 \( 1 - 0.589T + 11T^{2} \)
13 \( 1 - 4.93T + 13T^{2} \)
17 \( 1 - 5.34T + 17T^{2} \)
19 \( 1 - 1.04T + 19T^{2} \)
23 \( 1 + 2.14T + 23T^{2} \)
29 \( 1 - 9.11T + 29T^{2} \)
31 \( 1 - 6.55T + 31T^{2} \)
37 \( 1 + 10.6T + 37T^{2} \)
41 \( 1 + 2.44T + 41T^{2} \)
43 \( 1 + 7.99T + 43T^{2} \)
47 \( 1 + 0.401T + 47T^{2} \)
53 \( 1 + 9.79T + 53T^{2} \)
59 \( 1 - 8.94T + 59T^{2} \)
61 \( 1 - 3.27T + 61T^{2} \)
67 \( 1 + 4.07T + 67T^{2} \)
71 \( 1 - 11.5T + 71T^{2} \)
73 \( 1 + 1.28T + 73T^{2} \)
79 \( 1 + 2.66T + 79T^{2} \)
89 \( 1 + 1.57T + 89T^{2} \)
97 \( 1 - 17.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.65075350053221359994953866754, −10.64049625651573456821241319805, −9.904830164729116558516242115730, −8.310547315054618039705350650310, −6.72991300626215718548959551515, −6.18776914478357664491189116616, −5.32869345268003375147260450367, −4.75849697142234435619822563480, −3.57604152526464664713181607235, −1.33142974151326849745988235147, 1.33142974151326849745988235147, 3.57604152526464664713181607235, 4.75849697142234435619822563480, 5.32869345268003375147260450367, 6.18776914478357664491189116616, 6.72991300626215718548959551515, 8.310547315054618039705350650310, 9.904830164729116558516242115730, 10.64049625651573456821241319805, 11.65075350053221359994953866754

Graph of the $Z$-function along the critical line