Properties

Label 2-4140-1.1-c1-0-5
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 0.113·7-s − 3.39·11-s + 6.27·13-s − 3.61·17-s − 1.39·19-s − 23-s + 25-s + 6.38·29-s + 9.45·31-s + 0.113·35-s − 7.78·37-s − 11.0·41-s + 1.55·43-s − 1.70·47-s − 6.98·49-s + 8.71·53-s + 3.39·55-s + 8.95·59-s − 1.83·61-s − 6.27·65-s + 9.21·67-s + 6.82·71-s − 2.27·73-s + 0.387·77-s + 11.7·79-s − 1.16·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.0430·7-s − 1.02·11-s + 1.74·13-s − 0.877·17-s − 0.321·19-s − 0.208·23-s + 0.200·25-s + 1.18·29-s + 1.69·31-s + 0.0192·35-s − 1.28·37-s − 1.72·41-s + 0.237·43-s − 0.248·47-s − 0.998·49-s + 1.19·53-s + 0.458·55-s + 1.16·59-s − 0.234·61-s − 0.778·65-s + 1.12·67-s + 0.810·71-s − 0.266·73-s + 0.0441·77-s + 1.32·79-s − 0.127·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.542007752\)
\(L(\frac12)\) \(\approx\) \(1.542007752\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 + T \)
good7 \( 1 + 0.113T + 7T^{2} \)
11 \( 1 + 3.39T + 11T^{2} \)
13 \( 1 - 6.27T + 13T^{2} \)
17 \( 1 + 3.61T + 17T^{2} \)
19 \( 1 + 1.39T + 19T^{2} \)
29 \( 1 - 6.38T + 29T^{2} \)
31 \( 1 - 9.45T + 31T^{2} \)
37 \( 1 + 7.78T + 37T^{2} \)
41 \( 1 + 11.0T + 41T^{2} \)
43 \( 1 - 1.55T + 43T^{2} \)
47 \( 1 + 1.70T + 47T^{2} \)
53 \( 1 - 8.71T + 53T^{2} \)
59 \( 1 - 8.95T + 59T^{2} \)
61 \( 1 + 1.83T + 61T^{2} \)
67 \( 1 - 9.21T + 67T^{2} \)
71 \( 1 - 6.82T + 71T^{2} \)
73 \( 1 + 2.27T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 + 1.16T + 83T^{2} \)
89 \( 1 - 1.77T + 89T^{2} \)
97 \( 1 + 0.131T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.453029916113806364068511724790, −7.913937187168915828813180784055, −6.72821316575325459541665485805, −6.44970009053304233000890405342, −5.38010373692381803314529641614, −4.65960319288485828245121282725, −3.79174508532790750144771235069, −3.02971922407385045009529678351, −1.98465952860745940031424126558, −0.70198113341966677257745759571, 0.70198113341966677257745759571, 1.98465952860745940031424126558, 3.02971922407385045009529678351, 3.79174508532790750144771235069, 4.65960319288485828245121282725, 5.38010373692381803314529641614, 6.44970009053304233000890405342, 6.72821316575325459541665485805, 7.913937187168915828813180784055, 8.453029916113806364068511724790

Graph of the $Z$-function along the critical line