Properties

Label 2-4140-1.1-c1-0-5
Degree 22
Conductor 41404140
Sign 11
Analytic cond. 33.058033.0580
Root an. cond. 5.749615.74961
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 0.113·7-s − 3.39·11-s + 6.27·13-s − 3.61·17-s − 1.39·19-s − 23-s + 25-s + 6.38·29-s + 9.45·31-s + 0.113·35-s − 7.78·37-s − 11.0·41-s + 1.55·43-s − 1.70·47-s − 6.98·49-s + 8.71·53-s + 3.39·55-s + 8.95·59-s − 1.83·61-s − 6.27·65-s + 9.21·67-s + 6.82·71-s − 2.27·73-s + 0.387·77-s + 11.7·79-s − 1.16·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.0430·7-s − 1.02·11-s + 1.74·13-s − 0.877·17-s − 0.321·19-s − 0.208·23-s + 0.200·25-s + 1.18·29-s + 1.69·31-s + 0.0192·35-s − 1.28·37-s − 1.72·41-s + 0.237·43-s − 0.248·47-s − 0.998·49-s + 1.19·53-s + 0.458·55-s + 1.16·59-s − 0.234·61-s − 0.778·65-s + 1.12·67-s + 0.810·71-s − 0.266·73-s + 0.0441·77-s + 1.32·79-s − 0.127·83-s + ⋯

Functional equation

Λ(s)=(4140s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(4140s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 41404140    =    22325232^{2} \cdot 3^{2} \cdot 5 \cdot 23
Sign: 11
Analytic conductor: 33.058033.0580
Root analytic conductor: 5.749615.74961
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 4140, ( :1/2), 1)(2,\ 4140,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.5420077521.542007752
L(12)L(\frac12) \approx 1.5420077521.542007752
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+T 1 + T
23 1+T 1 + T
good7 1+0.113T+7T2 1 + 0.113T + 7T^{2}
11 1+3.39T+11T2 1 + 3.39T + 11T^{2}
13 16.27T+13T2 1 - 6.27T + 13T^{2}
17 1+3.61T+17T2 1 + 3.61T + 17T^{2}
19 1+1.39T+19T2 1 + 1.39T + 19T^{2}
29 16.38T+29T2 1 - 6.38T + 29T^{2}
31 19.45T+31T2 1 - 9.45T + 31T^{2}
37 1+7.78T+37T2 1 + 7.78T + 37T^{2}
41 1+11.0T+41T2 1 + 11.0T + 41T^{2}
43 11.55T+43T2 1 - 1.55T + 43T^{2}
47 1+1.70T+47T2 1 + 1.70T + 47T^{2}
53 18.71T+53T2 1 - 8.71T + 53T^{2}
59 18.95T+59T2 1 - 8.95T + 59T^{2}
61 1+1.83T+61T2 1 + 1.83T + 61T^{2}
67 19.21T+67T2 1 - 9.21T + 67T^{2}
71 16.82T+71T2 1 - 6.82T + 71T^{2}
73 1+2.27T+73T2 1 + 2.27T + 73T^{2}
79 111.7T+79T2 1 - 11.7T + 79T^{2}
83 1+1.16T+83T2 1 + 1.16T + 83T^{2}
89 11.77T+89T2 1 - 1.77T + 89T^{2}
97 1+0.131T+97T2 1 + 0.131T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.453029916113806364068511724790, −7.913937187168915828813180784055, −6.72821316575325459541665485805, −6.44970009053304233000890405342, −5.38010373692381803314529641614, −4.65960319288485828245121282725, −3.79174508532790750144771235069, −3.02971922407385045009529678351, −1.98465952860745940031424126558, −0.70198113341966677257745759571, 0.70198113341966677257745759571, 1.98465952860745940031424126558, 3.02971922407385045009529678351, 3.79174508532790750144771235069, 4.65960319288485828245121282725, 5.38010373692381803314529641614, 6.44970009053304233000890405342, 6.72821316575325459541665485805, 7.913937187168915828813180784055, 8.453029916113806364068511724790

Graph of the ZZ-function along the critical line