L(s) = 1 | − i·9-s − 2i·11-s − 2·19-s + 2·41-s − i·49-s + 2·59-s − 81-s + 2i·89-s − 2·99-s + ⋯ |
L(s) = 1 | − i·9-s − 2i·11-s − 2·19-s + 2·41-s − i·49-s + 2·59-s − 81-s + 2i·89-s − 2·99-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9772025443\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9772025443\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + 2iT - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + 2T + T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - 2T + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - 2T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.247111770411681965366853272028, −8.643143316780750637366533237565, −8.087037699184022222327052723812, −6.82127411470994223871723853581, −6.19341001085254545499462398235, −5.55181477251548754789703190542, −4.19604982427584580125755303700, −3.52001274082573167693286635440, −2.44073975174804887243873314855, −0.76618312973640331473668257967,
1.87141801462053587037809439727, 2.51676695330962227028664132581, 4.22308004814163926392777277835, 4.57772335230375983126653523610, 5.65673538214919461925099154589, 6.68337555070165749539635926378, 7.39500675848415527813322902401, 8.100557276558661501375151136729, 8.997188209433688262094213228938, 9.852823589809812008632608163208