L(s) = 1 | + (−1 − i)3-s + (1 + i)7-s − i·9-s + 4·11-s + (−3 + 3i)13-s + (3 − 3i)17-s + 6i·19-s − 2i·21-s + (3 − 3i)23-s + (−4 + 4i)27-s − 2·29-s + 6i·31-s + (−4 − 4i)33-s + (−3 − 3i)37-s + 6·39-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (0.377 + 0.377i)7-s − 0.333i·9-s + 1.20·11-s + (−0.832 + 0.832i)13-s + (0.727 − 0.727i)17-s + 1.37i·19-s − 0.436i·21-s + (0.625 − 0.625i)23-s + (−0.769 + 0.769i)27-s − 0.371·29-s + 1.07i·31-s + (−0.696 − 0.696i)33-s + (−0.493 − 0.493i)37-s + 0.960·39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.973+0.229i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.973+0.229i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.973+0.229i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(543,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.973+0.229i)
|
Particular Values
L(1) |
≈ |
1.509645793 |
L(21) |
≈ |
1.509645793 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1+i)T+3iT2 |
| 7 | 1+(−1−i)T+7iT2 |
| 11 | 1−4T+11T2 |
| 13 | 1+(3−3i)T−13iT2 |
| 17 | 1+(−3+3i)T−17iT2 |
| 19 | 1−6iT−19T2 |
| 23 | 1+(−3+3i)T−23iT2 |
| 29 | 1+2T+29T2 |
| 31 | 1−6iT−31T2 |
| 37 | 1+(3+3i)T+37iT2 |
| 41 | 1−6T+41T2 |
| 43 | 1+(−3−3i)T+43iT2 |
| 47 | 1+(−9−9i)T+47iT2 |
| 53 | 1+(−5+5i)T−53iT2 |
| 59 | 1+10iT−59T2 |
| 61 | 1−12iT−61T2 |
| 67 | 1+(−9+9i)T−67iT2 |
| 71 | 1−6iT−71T2 |
| 73 | 1+(5+5i)T+73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(−3−3i)T+83iT2 |
| 89 | 1−89T2 |
| 97 | 1+(−7+7i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.305393178039716966822555472399, −8.719766673044612478918708286302, −7.53445006873851160867671529588, −6.97740468308658975810006489468, −6.17265562401493949478572748374, −5.42856529628178976286610297630, −4.41173621166901332633662406709, −3.41250153430051590262418356790, −2.01597518886371727199565323716, −0.983405959453079691104987812441,
0.866450618518392576208124893054, 2.35349285089622839385830368836, 3.68069322451626743985511515298, 4.48253475421756990229897947276, 5.29255845273448946373582166915, 5.98821861704053599551446532266, 7.17467628510064910004177427988, 7.67933377654365724977655464813, 8.779328227780187777344334953433, 9.533014053654160072655803997924