L(s) = 1 | + (−1 − i)3-s + (1 + i)7-s − i·9-s + 4·11-s + (−3 + 3i)13-s + (3 − 3i)17-s + 6i·19-s − 2i·21-s + (3 − 3i)23-s + (−4 + 4i)27-s − 2·29-s + 6i·31-s + (−4 − 4i)33-s + (−3 − 3i)37-s + 6·39-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (0.377 + 0.377i)7-s − 0.333i·9-s + 1.20·11-s + (−0.832 + 0.832i)13-s + (0.727 − 0.727i)17-s + 1.37i·19-s − 0.436i·21-s + (0.625 − 0.625i)23-s + (−0.769 + 0.769i)27-s − 0.371·29-s + 1.07i·31-s + (−0.696 − 0.696i)33-s + (−0.493 − 0.493i)37-s + 0.960·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.509645793\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.509645793\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 11 | \( 1 - 4T + 11T^{2} \) |
| 13 | \( 1 + (3 - 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3 + 3i)T - 17iT^{2} \) |
| 19 | \( 1 - 6iT - 19T^{2} \) |
| 23 | \( 1 + (-3 + 3i)T - 23iT^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 - 6iT - 31T^{2} \) |
| 37 | \( 1 + (3 + 3i)T + 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (-3 - 3i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9 - 9i)T + 47iT^{2} \) |
| 53 | \( 1 + (-5 + 5i)T - 53iT^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 - 12iT - 61T^{2} \) |
| 67 | \( 1 + (-9 + 9i)T - 67iT^{2} \) |
| 71 | \( 1 - 6iT - 71T^{2} \) |
| 73 | \( 1 + (5 + 5i)T + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-3 - 3i)T + 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-7 + 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.305393178039716966822555472399, −8.719766673044612478918708286302, −7.53445006873851160867671529588, −6.97740468308658975810006489468, −6.17265562401493949478572748374, −5.42856529628178976286610297630, −4.41173621166901332633662406709, −3.41250153430051590262418356790, −2.01597518886371727199565323716, −0.983405959453079691104987812441,
0.866450618518392576208124893054, 2.35349285089622839385830368836, 3.68069322451626743985511515298, 4.48253475421756990229897947276, 5.29255845273448946373582166915, 5.98821861704053599551446532266, 7.17467628510064910004177427988, 7.67933377654365724977655464813, 8.779328227780187777344334953433, 9.533014053654160072655803997924