L(s) = 1 | − 2·3-s + 9-s − 6i·11-s + 6i·17-s − 2i·19-s + 4·27-s + 12i·33-s − 6·41-s − 10·43-s + 7·49-s − 12i·51-s + 4i·57-s + 6i·59-s − 14·67-s + 2i·73-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.333·9-s − 1.80i·11-s + 1.45i·17-s − 0.458i·19-s + 0.769·27-s + 2.08i·33-s − 0.937·41-s − 1.52·43-s + 49-s − 1.68i·51-s + 0.529i·57-s + 0.781i·59-s − 1.71·67-s + 0.234i·73-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.948−0.316i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(−0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.948−0.316i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1600, ( :1/2), −0.948−0.316i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2T+3T2 |
| 7 | 1−7T2 |
| 11 | 1+6iT−11T2 |
| 13 | 1+13T2 |
| 17 | 1−6iT−17T2 |
| 19 | 1+2iT−19T2 |
| 23 | 1−23T2 |
| 29 | 1−29T2 |
| 31 | 1+31T2 |
| 37 | 1+37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+10T+43T2 |
| 47 | 1−47T2 |
| 53 | 1+53T2 |
| 59 | 1−6iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1+14T+67T2 |
| 71 | 1+71T2 |
| 73 | 1−2iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+18T+83T2 |
| 89 | 1+18T+89T2 |
| 97 | 1+10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.632998009671044337676015389991, −8.493264023253021968128737306529, −7.19053170722770689998093942716, −6.21806256559437420914353141876, −5.86527169376354659790671520497, −5.02968443177532664818177209995, −3.90871129395749100222680498506, −2.93801831066259447993989928945, −1.29213611856867358002892438412, 0,
1.60047304650876806231188647670, 2.86502747756074582961215094783, 4.29779990415778891390719514373, 4.98450710694390351225680959151, 5.64006864436831248426242047187, 6.78432884768124675850943487843, 7.12083300677956764268778798250, 8.167837006198653615517623175890, 9.269512082871218195265542415710