L(s) = 1 | − 2·3-s + 9-s − 6i·11-s + 6i·17-s − 2i·19-s + 4·27-s + 12i·33-s − 6·41-s − 10·43-s + 7·49-s − 12i·51-s + 4i·57-s + 6i·59-s − 14·67-s + 2i·73-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.333·9-s − 1.80i·11-s + 1.45i·17-s − 0.458i·19-s + 0.769·27-s + 2.08i·33-s − 0.937·41-s − 1.52·43-s + 49-s − 1.68i·51-s + 0.529i·57-s + 0.781i·59-s − 1.71·67-s + 0.234i·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 2T + 3T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 + 6iT - 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 6iT - 17T^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + 10T + 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 14T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 2iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 18T + 83T^{2} \) |
| 89 | \( 1 + 18T + 89T^{2} \) |
| 97 | \( 1 + 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.632998009671044337676015389991, −8.493264023253021968128737306529, −7.19053170722770689998093942716, −6.21806256559437420914353141876, −5.86527169376354659790671520497, −5.02968443177532664818177209995, −3.90871129395749100222680498506, −2.93801831066259447993989928945, −1.29213611856867358002892438412, 0,
1.60047304650876806231188647670, 2.86502747756074582961215094783, 4.29779990415778891390719514373, 4.98450710694390351225680959151, 5.64006864436831248426242047187, 6.78432884768124675850943487843, 7.12083300677956764268778798250, 8.167837006198653615517623175890, 9.269512082871218195265542415710