L(s) = 1 | + (1 + i)3-s + (−1 + i)7-s − i·9-s − 4i·11-s + (−4 + 4i)13-s + (−4 − 4i)17-s − 4·19-s − 2·21-s + (−5 − 5i)23-s + (4 − 4i)27-s + 2i·29-s − 8i·31-s + (4 − 4i)33-s − 8·39-s − 4·41-s + ⋯ |
L(s) = 1 | + (0.577 + 0.577i)3-s + (−0.377 + 0.377i)7-s − 0.333i·9-s − 1.20i·11-s + (−1.10 + 1.10i)13-s + (−0.970 − 0.970i)17-s − 0.917·19-s − 0.436·21-s + (−1.04 − 1.04i)23-s + (0.769 − 0.769i)27-s + 0.371i·29-s − 1.43i·31-s + (0.696 − 0.696i)33-s − 1.28·39-s − 0.624·41-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.525+0.850i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(−0.525+0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.525+0.850i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1407,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), −0.525+0.850i)
|
Particular Values
L(1) |
≈ |
0.6058311848 |
L(21) |
≈ |
0.6058311848 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−1−i)T+3iT2 |
| 7 | 1+(1−i)T−7iT2 |
| 11 | 1+4iT−11T2 |
| 13 | 1+(4−4i)T−13iT2 |
| 17 | 1+(4+4i)T+17iT2 |
| 19 | 1+4T+19T2 |
| 23 | 1+(5+5i)T+23iT2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+8iT−31T2 |
| 37 | 1+37iT2 |
| 41 | 1+4T+41T2 |
| 43 | 1+(−7−7i)T+43iT2 |
| 47 | 1+(3−3i)T−47iT2 |
| 53 | 1+(4−4i)T−53iT2 |
| 59 | 1+4T+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1+(3−3i)T−67iT2 |
| 71 | 1+16iT−71T2 |
| 73 | 1+(−4+4i)T−73iT2 |
| 79 | 1+8T+79T2 |
| 83 | 1+(5+5i)T+83iT2 |
| 89 | 1+10iT−89T2 |
| 97 | 1+(−12−12i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.192900721160815985217300973106, −8.608609749428778522541462133173, −7.67151786192096691761061187536, −6.51233916545006477869457783845, −6.11105529258979221719144960840, −4.67765169022726407765509898463, −4.15087887146774025401614048191, −2.97357296964952183081668291802, −2.27037120910283167330980891325, −0.19487628435779945869852605905,
1.78525176044017764225093375829, 2.46311500184935181434349186261, 3.69070812349028980362855878864, 4.65910509730366936616086594755, 5.57524113552240322005604675061, 6.80379654127223642158764400275, 7.23639904030759459189969826805, 8.089710328410930518911263394814, 8.651729898430027713675274265469, 9.878476042868914690461753608833