L(s) = 1 | + (−1 − i)3-s + (1 − i)7-s − i·9-s + 4i·11-s + (−4 + 4i)13-s + (−4 − 4i)17-s + 4·19-s − 2·21-s + (5 + 5i)23-s + (−4 + 4i)27-s + 2i·29-s + 8i·31-s + (4 − 4i)33-s + 8·39-s − 4·41-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (0.377 − 0.377i)7-s − 0.333i·9-s + 1.20i·11-s + (−1.10 + 1.10i)13-s + (−0.970 − 0.970i)17-s + 0.917·19-s − 0.436·21-s + (1.04 + 1.04i)23-s + (−0.769 + 0.769i)27-s + 0.371i·29-s + 1.43i·31-s + (0.696 − 0.696i)33-s + 1.28·39-s − 0.624·41-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.525−0.850i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.525−0.850i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1407,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.525−0.850i)
|
Particular Values
L(1) |
≈ |
0.9550078910 |
L(21) |
≈ |
0.9550078910 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1+i)T+3iT2 |
| 7 | 1+(−1+i)T−7iT2 |
| 11 | 1−4iT−11T2 |
| 13 | 1+(4−4i)T−13iT2 |
| 17 | 1+(4+4i)T+17iT2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(−5−5i)T+23iT2 |
| 29 | 1−2iT−29T2 |
| 31 | 1−8iT−31T2 |
| 37 | 1+37iT2 |
| 41 | 1+4T+41T2 |
| 43 | 1+(7+7i)T+43iT2 |
| 47 | 1+(−3+3i)T−47iT2 |
| 53 | 1+(4−4i)T−53iT2 |
| 59 | 1−4T+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1+(−3+3i)T−67iT2 |
| 71 | 1−16iT−71T2 |
| 73 | 1+(−4+4i)T−73iT2 |
| 79 | 1−8T+79T2 |
| 83 | 1+(−5−5i)T+83iT2 |
| 89 | 1+10iT−89T2 |
| 97 | 1+(−12−12i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.435330880818362861898421988574, −8.977489032846631961492653431021, −7.54279911710181256328349125209, −6.99585954222057837778936537293, −6.74290309768572867376203147843, −5.15012851878892312761354036258, −4.88516503467094398560240983087, −3.62600451083269632399138749568, −2.26110268668030789283699228157, −1.21720050887824962521273557664,
0.42983496778959672616558086028, 2.22956301135360237128084143282, 3.23976030722810859147189041380, 4.46462991134290027235382930180, 5.19295934726610047977433885556, 5.79225364350964496423268846699, 6.73297676475925844216356226049, 7.970434541080482739222639776938, 8.310488556918893265567780529407, 9.403435773382798172488660615074