L(s) = 1 | + (−1 − i)3-s + (−3 + 3i)7-s − i·9-s − 2i·11-s + (3 − 3i)13-s + (−1 − i)17-s + 4·19-s + 6·21-s + (−1 − i)23-s + (−4 + 4i)27-s + 10i·31-s + (−2 + 2i)33-s + (−1 − i)37-s − 6·39-s − 10·41-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (−1.13 + 1.13i)7-s − 0.333i·9-s − 0.603i·11-s + (0.832 − 0.832i)13-s + (−0.242 − 0.242i)17-s + 0.917·19-s + 1.30·21-s + (−0.208 − 0.208i)23-s + (−0.769 + 0.769i)27-s + 1.79i·31-s + (−0.348 + 0.348i)33-s + (−0.164 − 0.164i)37-s − 0.960·39-s − 1.56·41-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.850−0.525i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(−0.850−0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.850−0.525i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1407,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1600, ( :1/2), −0.850−0.525i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1+i)T+3iT2 |
| 7 | 1+(3−3i)T−7iT2 |
| 11 | 1+2iT−11T2 |
| 13 | 1+(−3+3i)T−13iT2 |
| 17 | 1+(1+i)T+17iT2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(1+i)T+23iT2 |
| 29 | 1−29T2 |
| 31 | 1−10iT−31T2 |
| 37 | 1+(1+i)T+37iT2 |
| 41 | 1+10T+41T2 |
| 43 | 1+(5+5i)T+43iT2 |
| 47 | 1+(3−3i)T−47iT2 |
| 53 | 1+(5−5i)T−53iT2 |
| 59 | 1+12T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+(−1+i)T−67iT2 |
| 71 | 1−2iT−71T2 |
| 73 | 1+(1−i)T−73iT2 |
| 79 | 1+8T+79T2 |
| 83 | 1+(5+5i)T+83iT2 |
| 89 | 1−16iT−89T2 |
| 97 | 1+(−3−3i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.912927045451480904730248988512, −8.283539223919954088699060381263, −7.08197431740022071042206041486, −6.40693536831449581400013557028, −5.81728526750977657581662811718, −5.14296477111565930907404971565, −3.43677035799624185483612676385, −3.00867318863603356950809490039, −1.38134933259869946030630000976, 0,
1.68082192265665586254738887024, 3.26524033774252583616087916396, 4.08010266609314751459190029639, 4.76596156559381746265679850396, 5.89290166053203571505447211701, 6.60444173453214833013871216286, 7.35466130558282302581545567147, 8.238087443664100648297461376930, 9.492720387548640946458888795814