L(s) = 1 | + (2.15 + 2.15i)3-s − 2.31i·7-s + 6.31i·9-s + (−3.15 + 3.15i)11-s + (4.31 + 4.31i)13-s − 1.31·17-s + (0.158 + 0.158i)19-s + (5 − 5i)21-s − 0.316i·23-s + (−7.15 + 7.15i)27-s + (2 + 2i)29-s + 2.31·31-s − 13.6·33-s + (−0.683 + 0.683i)37-s + 18.6i·39-s + ⋯ |
L(s) = 1 | + (1.24 + 1.24i)3-s − 0.875i·7-s + 2.10i·9-s + (−0.952 + 0.952i)11-s + (1.19 + 1.19i)13-s − 0.319·17-s + (0.0363 + 0.0363i)19-s + (1.09 − 1.09i)21-s − 0.0660i·23-s + (−1.37 + 1.37i)27-s + (0.371 + 0.371i)29-s + 0.416·31-s − 2.37·33-s + (−0.112 + 0.112i)37-s + 2.98i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.437104702\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.437104702\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-2.15 - 2.15i)T + 3iT^{2} \) |
| 7 | \( 1 + 2.31iT - 7T^{2} \) |
| 11 | \( 1 + (3.15 - 3.15i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.31 - 4.31i)T + 13iT^{2} \) |
| 17 | \( 1 + 1.31T + 17T^{2} \) |
| 19 | \( 1 + (-0.158 - 0.158i)T + 19iT^{2} \) |
| 23 | \( 1 + 0.316iT - 23T^{2} \) |
| 29 | \( 1 + (-2 - 2i)T + 29iT^{2} \) |
| 31 | \( 1 - 2.31T + 31T^{2} \) |
| 37 | \( 1 + (0.683 - 0.683i)T - 37iT^{2} \) |
| 41 | \( 1 + 5iT - 41T^{2} \) |
| 43 | \( 1 + (7.63 - 7.63i)T - 43iT^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 + (-3.31 + 3.31i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.31 + 1.31i)T - 59iT^{2} \) |
| 61 | \( 1 + (-9.63 - 9.63i)T + 61iT^{2} \) |
| 67 | \( 1 + (-9.15 - 9.15i)T + 67iT^{2} \) |
| 71 | \( 1 + 8.63iT - 71T^{2} \) |
| 73 | \( 1 - 6.68iT - 73T^{2} \) |
| 79 | \( 1 + 4.31T + 79T^{2} \) |
| 83 | \( 1 + (7.15 + 7.15i)T + 83iT^{2} \) |
| 89 | \( 1 + 3.94iT - 89T^{2} \) |
| 97 | \( 1 - 6.63T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.831268378000621239166509816122, −8.781374383616868492056825842413, −8.365959147492488045216193215691, −7.41706877624103409564440434780, −6.62514438861370055891868707804, −5.17657053403341719945827495543, −4.37925767753785099134088072973, −3.86643420466276872888524017374, −2.86508287219055308500493727555, −1.77260668700344983357651641603,
0.806346660310566987761366925076, 2.11656108032855161315923276747, 2.94781378657389424228346027498, 3.55774711321549254641807374276, 5.27427660252145941459382692496, 6.05235876050997606364239793369, 6.80041571069523751460433435231, 7.932212460904680029787595114674, 8.320911008770646419945463414612, 8.702010053341982647950095966861