L(s) = 1 | + 9·3-s − 26·7-s + 54·9-s − 59·11-s − 28·13-s + 5·17-s + 109·19-s − 234·21-s + 194·23-s + 243·27-s + 32·29-s − 10·31-s − 531·33-s + 198·37-s − 252·39-s + 117·41-s + 388·43-s + 68·47-s + 333·49-s + 45·51-s + 18·53-s + 981·57-s + 392·59-s + 710·61-s − 1.40e3·63-s − 253·67-s + 1.74e3·69-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 1.40·7-s + 2·9-s − 1.61·11-s − 0.597·13-s + 0.0713·17-s + 1.31·19-s − 2.43·21-s + 1.75·23-s + 1.73·27-s + 0.204·29-s − 0.0579·31-s − 2.80·33-s + 0.879·37-s − 1.03·39-s + 0.445·41-s + 1.37·43-s + 0.211·47-s + 0.970·49-s + 0.123·51-s + 0.0466·53-s + 2.27·57-s + 0.864·59-s + 1.49·61-s − 2.80·63-s − 0.461·67-s + 3.04·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.333950470 |
L(21) |
≈ |
3.333950470 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−p2T+p3T2 |
| 7 | 1+26T+p3T2 |
| 11 | 1+59T+p3T2 |
| 13 | 1+28T+p3T2 |
| 17 | 1−5T+p3T2 |
| 19 | 1−109T+p3T2 |
| 23 | 1−194T+p3T2 |
| 29 | 1−32T+p3T2 |
| 31 | 1+10T+p3T2 |
| 37 | 1−198T+p3T2 |
| 41 | 1−117T+p3T2 |
| 43 | 1−388T+p3T2 |
| 47 | 1−68T+p3T2 |
| 53 | 1−18T+p3T2 |
| 59 | 1−392T+p3T2 |
| 61 | 1−710T+p3T2 |
| 67 | 1+253T+p3T2 |
| 71 | 1−612T+p3T2 |
| 73 | 1+549T+p3T2 |
| 79 | 1+414T+p3T2 |
| 83 | 1+121T+p3T2 |
| 89 | 1+81T+p3T2 |
| 97 | 1+1502T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.105921820664199125260757361906, −8.300637610774630132117018879082, −7.37795196084154701844332503743, −7.14668462352730111396516721517, −5.75502762664416276467004496662, −4.76882678009111725199752431059, −3.57393278607174061446424571583, −2.85469636941045360769011860044, −2.48468896344146973630823661749, −0.78880587193246888501100179150,
0.78880587193246888501100179150, 2.48468896344146973630823661749, 2.85469636941045360769011860044, 3.57393278607174061446424571583, 4.76882678009111725199752431059, 5.75502762664416276467004496662, 7.14668462352730111396516721517, 7.37795196084154701844332503743, 8.300637610774630132117018879082, 9.105921820664199125260757361906