L(s) = 1 | − 7·3-s + 6·7-s + 22·9-s + 43·11-s + 28·13-s + 91·17-s + 35·19-s − 42·21-s + 162·23-s + 35·27-s − 160·29-s + 42·31-s − 301·33-s + 314·37-s − 196·39-s − 203·41-s − 92·43-s + 196·47-s − 307·49-s − 637·51-s − 82·53-s − 245·57-s + 280·59-s + 518·61-s + 132·63-s − 141·67-s − 1.13e3·69-s + ⋯ |
L(s) = 1 | − 1.34·3-s + 0.323·7-s + 0.814·9-s + 1.17·11-s + 0.597·13-s + 1.29·17-s + 0.422·19-s − 0.436·21-s + 1.46·23-s + 0.249·27-s − 1.02·29-s + 0.243·31-s − 1.58·33-s + 1.39·37-s − 0.804·39-s − 0.773·41-s − 0.326·43-s + 0.608·47-s − 0.895·49-s − 1.74·51-s − 0.212·53-s − 0.569·57-s + 0.617·59-s + 1.08·61-s + 0.263·63-s − 0.257·67-s − 1.97·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.729367092 |
L(21) |
≈ |
1.729367092 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+7T+p3T2 |
| 7 | 1−6T+p3T2 |
| 11 | 1−43T+p3T2 |
| 13 | 1−28T+p3T2 |
| 17 | 1−91T+p3T2 |
| 19 | 1−35T+p3T2 |
| 23 | 1−162T+p3T2 |
| 29 | 1+160T+p3T2 |
| 31 | 1−42T+p3T2 |
| 37 | 1−314T+p3T2 |
| 41 | 1+203T+p3T2 |
| 43 | 1+92T+p3T2 |
| 47 | 1−196T+p3T2 |
| 53 | 1+82T+p3T2 |
| 59 | 1−280T+p3T2 |
| 61 | 1−518T+p3T2 |
| 67 | 1+141T+p3T2 |
| 71 | 1−412T+p3T2 |
| 73 | 1+763T+p3T2 |
| 79 | 1−510T+p3T2 |
| 83 | 1+777T+p3T2 |
| 89 | 1+945T+p3T2 |
| 97 | 1−1246T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.162807130780010267449038509392, −8.220536188033643559884166462784, −7.22399100219122118214443336759, −6.52221224936827348001238382577, −5.72654269895957227979150128556, −5.13122971338231583607225141514, −4.13721208209058985945257453930, −3.14836832984906747400199666811, −1.44017897451635070895122931497, −0.77454565099657160217588920506,
0.77454565099657160217588920506, 1.44017897451635070895122931497, 3.14836832984906747400199666811, 4.13721208209058985945257453930, 5.13122971338231583607225141514, 5.72654269895957227979150128556, 6.52221224936827348001238382577, 7.22399100219122118214443336759, 8.220536188033643559884166462784, 9.162807130780010267449038509392