L(s) = 1 | + 3-s − 26·7-s − 26·9-s + 45·11-s − 44·13-s + 117·17-s − 91·19-s − 26·21-s + 18·23-s − 53·27-s − 144·29-s − 26·31-s + 45·33-s + 214·37-s − 44·39-s − 459·41-s − 460·43-s + 468·47-s + 333·49-s + 117·51-s − 558·53-s − 91·57-s − 72·59-s + 118·61-s + 676·63-s + 251·67-s + 18·69-s + ⋯ |
L(s) = 1 | + 0.192·3-s − 1.40·7-s − 0.962·9-s + 1.23·11-s − 0.938·13-s + 1.66·17-s − 1.09·19-s − 0.270·21-s + 0.163·23-s − 0.377·27-s − 0.922·29-s − 0.150·31-s + 0.237·33-s + 0.950·37-s − 0.180·39-s − 1.74·41-s − 1.63·43-s + 1.45·47-s + 0.970·49-s + 0.321·51-s − 1.44·53-s − 0.211·57-s − 0.158·59-s + 0.247·61-s + 1.35·63-s + 0.457·67-s + 0.0314·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.278575839 |
L(21) |
≈ |
1.278575839 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−T+p3T2 |
| 7 | 1+26T+p3T2 |
| 11 | 1−45T+p3T2 |
| 13 | 1+44T+p3T2 |
| 17 | 1−117T+p3T2 |
| 19 | 1+91T+p3T2 |
| 23 | 1−18T+p3T2 |
| 29 | 1+144T+p3T2 |
| 31 | 1+26T+p3T2 |
| 37 | 1−214T+p3T2 |
| 41 | 1+459T+p3T2 |
| 43 | 1+460T+p3T2 |
| 47 | 1−468T+p3T2 |
| 53 | 1+558T+p3T2 |
| 59 | 1+72T+p3T2 |
| 61 | 1−118T+p3T2 |
| 67 | 1−251T+p3T2 |
| 71 | 1+108T+p3T2 |
| 73 | 1−299T+p3T2 |
| 79 | 1−898T+p3T2 |
| 83 | 1−927T+p3T2 |
| 89 | 1−351T+p3T2 |
| 97 | 1−386T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.196529589833981831689860789104, −8.331319455160018615253547295503, −7.40643258767182009746217685718, −6.51672166572814897357218412812, −5.97465969846708911558173623648, −4.96434879447422325919440724358, −3.64147636310899855322869601522, −3.20972271136542460911399217432, −2.01887438152307613027036935458, −0.51783118127359750653814429717,
0.51783118127359750653814429717, 2.01887438152307613027036935458, 3.20972271136542460911399217432, 3.64147636310899855322869601522, 4.96434879447422325919440724358, 5.97465969846708911558173623648, 6.51672166572814897357218412812, 7.40643258767182009746217685718, 8.331319455160018615253547295503, 9.196529589833981831689860789104