L(s) = 1 | + 3-s − 26·7-s − 26·9-s + 45·11-s − 44·13-s + 117·17-s − 91·19-s − 26·21-s + 18·23-s − 53·27-s − 144·29-s − 26·31-s + 45·33-s + 214·37-s − 44·39-s − 459·41-s − 460·43-s + 468·47-s + 333·49-s + 117·51-s − 558·53-s − 91·57-s − 72·59-s + 118·61-s + 676·63-s + 251·67-s + 18·69-s + ⋯ |
L(s) = 1 | + 0.192·3-s − 1.40·7-s − 0.962·9-s + 1.23·11-s − 0.938·13-s + 1.66·17-s − 1.09·19-s − 0.270·21-s + 0.163·23-s − 0.377·27-s − 0.922·29-s − 0.150·31-s + 0.237·33-s + 0.950·37-s − 0.180·39-s − 1.74·41-s − 1.63·43-s + 1.45·47-s + 0.970·49-s + 0.321·51-s − 1.44·53-s − 0.211·57-s − 0.158·59-s + 0.247·61-s + 1.35·63-s + 0.457·67-s + 0.0314·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.278575839\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.278575839\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - T + p^{3} T^{2} \) |
| 7 | \( 1 + 26 T + p^{3} T^{2} \) |
| 11 | \( 1 - 45 T + p^{3} T^{2} \) |
| 13 | \( 1 + 44 T + p^{3} T^{2} \) |
| 17 | \( 1 - 117 T + p^{3} T^{2} \) |
| 19 | \( 1 + 91 T + p^{3} T^{2} \) |
| 23 | \( 1 - 18 T + p^{3} T^{2} \) |
| 29 | \( 1 + 144 T + p^{3} T^{2} \) |
| 31 | \( 1 + 26 T + p^{3} T^{2} \) |
| 37 | \( 1 - 214 T + p^{3} T^{2} \) |
| 41 | \( 1 + 459 T + p^{3} T^{2} \) |
| 43 | \( 1 + 460 T + p^{3} T^{2} \) |
| 47 | \( 1 - 468 T + p^{3} T^{2} \) |
| 53 | \( 1 + 558 T + p^{3} T^{2} \) |
| 59 | \( 1 + 72 T + p^{3} T^{2} \) |
| 61 | \( 1 - 118 T + p^{3} T^{2} \) |
| 67 | \( 1 - 251 T + p^{3} T^{2} \) |
| 71 | \( 1 + 108 T + p^{3} T^{2} \) |
| 73 | \( 1 - 299 T + p^{3} T^{2} \) |
| 79 | \( 1 - 898 T + p^{3} T^{2} \) |
| 83 | \( 1 - 927 T + p^{3} T^{2} \) |
| 89 | \( 1 - 351 T + p^{3} T^{2} \) |
| 97 | \( 1 - 386 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.196529589833981831689860789104, −8.331319455160018615253547295503, −7.40643258767182009746217685718, −6.51672166572814897357218412812, −5.97465969846708911558173623648, −4.96434879447422325919440724358, −3.64147636310899855322869601522, −3.20972271136542460911399217432, −2.01887438152307613027036935458, −0.51783118127359750653814429717,
0.51783118127359750653814429717, 2.01887438152307613027036935458, 3.20972271136542460911399217432, 3.64147636310899855322869601522, 4.96434879447422325919440724358, 5.97465969846708911558173623648, 6.51672166572814897357218412812, 7.40643258767182009746217685718, 8.331319455160018615253547295503, 9.196529589833981831689860789104