L(s) = 1 | − 8·3-s + 16·7-s + 37·9-s − 40·11-s − 50·13-s + 30·17-s + 40·19-s − 128·21-s + 48·23-s − 80·27-s + 34·29-s − 320·31-s + 320·33-s + 310·37-s + 400·39-s + 410·41-s − 152·43-s − 416·47-s − 87·49-s − 240·51-s − 410·53-s − 320·57-s − 200·59-s − 30·61-s + 592·63-s − 776·67-s − 384·69-s + ⋯ |
L(s) = 1 | − 1.53·3-s + 0.863·7-s + 1.37·9-s − 1.09·11-s − 1.06·13-s + 0.428·17-s + 0.482·19-s − 1.33·21-s + 0.435·23-s − 0.570·27-s + 0.217·29-s − 1.85·31-s + 1.68·33-s + 1.37·37-s + 1.64·39-s + 1.56·41-s − 0.539·43-s − 1.29·47-s − 0.253·49-s − 0.658·51-s − 1.06·53-s − 0.743·57-s − 0.441·59-s − 0.0629·61-s + 1.18·63-s − 1.41·67-s − 0.669·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.8083162300 |
L(21) |
≈ |
0.8083162300 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+8T+p3T2 |
| 7 | 1−16T+p3T2 |
| 11 | 1+40T+p3T2 |
| 13 | 1+50T+p3T2 |
| 17 | 1−30T+p3T2 |
| 19 | 1−40T+p3T2 |
| 23 | 1−48T+p3T2 |
| 29 | 1−34T+p3T2 |
| 31 | 1+320T+p3T2 |
| 37 | 1−310T+p3T2 |
| 41 | 1−10pT+p3T2 |
| 43 | 1+152T+p3T2 |
| 47 | 1+416T+p3T2 |
| 53 | 1+410T+p3T2 |
| 59 | 1+200T+p3T2 |
| 61 | 1+30T+p3T2 |
| 67 | 1+776T+p3T2 |
| 71 | 1+400T+p3T2 |
| 73 | 1−630T+p3T2 |
| 79 | 1−1120T+p3T2 |
| 83 | 1+552T+p3T2 |
| 89 | 1+326T+p3T2 |
| 97 | 1−110T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.246057983553326163200671499598, −7.85307592800567424949871789418, −7.55419681364820494835359746952, −6.50176061984022841871306569955, −5.54358639289057795733329563901, −5.10280849466233146169527442782, −4.43656617653808281793710472000, −2.92455275558375989384975319898, −1.66086619973863982051246998957, −0.47444034053957629981648384660,
0.47444034053957629981648384660, 1.66086619973863982051246998957, 2.92455275558375989384975319898, 4.43656617653808281793710472000, 5.10280849466233146169527442782, 5.54358639289057795733329563901, 6.50176061984022841871306569955, 7.55419681364820494835359746952, 7.85307592800567424949871789418, 9.246057983553326163200671499598