L(s) = 1 | − 27·9-s − 92·13-s − 104·17-s − 130·29-s + 396·37-s + 230·41-s − 343·49-s + 572·53-s + 830·61-s − 592·73-s + 729·81-s + 1.67e3·89-s − 1.81e3·97-s − 598·101-s + 1.74e3·109-s − 1.32e3·113-s + 2.48e3·117-s + ⋯ |
L(s) = 1 | − 9-s − 1.96·13-s − 1.48·17-s − 0.832·29-s + 1.75·37-s + 0.876·41-s − 49-s + 1.48·53-s + 1.74·61-s − 0.949·73-s + 81-s + 1.98·89-s − 1.90·97-s − 0.589·101-s + 1.53·109-s − 1.10·113-s + 1.96·117-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.9707877197 |
L(21) |
≈ |
0.9707877197 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+p3T2 |
| 7 | 1+p3T2 |
| 11 | 1+p3T2 |
| 13 | 1+92T+p3T2 |
| 17 | 1+104T+p3T2 |
| 19 | 1+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1+130T+p3T2 |
| 31 | 1+p3T2 |
| 37 | 1−396T+p3T2 |
| 41 | 1−230T+p3T2 |
| 43 | 1+p3T2 |
| 47 | 1+p3T2 |
| 53 | 1−572T+p3T2 |
| 59 | 1+p3T2 |
| 61 | 1−830T+p3T2 |
| 67 | 1+p3T2 |
| 71 | 1+p3T2 |
| 73 | 1+592T+p3T2 |
| 79 | 1+p3T2 |
| 83 | 1+p3T2 |
| 89 | 1−1670T+p3T2 |
| 97 | 1+1816T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.153414178536364170474972581429, −8.236887585124414802485640997880, −7.45721832291116743968145268197, −6.67893136648116745588846640316, −5.73172590299788706605911013151, −4.92189185495959417070482783843, −4.09058620606015797332101007998, −2.73650619566920242331990061996, −2.20328927761097337870816619045, −0.44360603596238490082235246168,
0.44360603596238490082235246168, 2.20328927761097337870816619045, 2.73650619566920242331990061996, 4.09058620606015797332101007998, 4.92189185495959417070482783843, 5.73172590299788706605911013151, 6.67893136648116745588846640316, 7.45721832291116743968145268197, 8.236887585124414802485640997880, 9.153414178536364170474972581429