L(s) = 1 | − 5·3-s + 2·7-s − 2·9-s − 39·11-s − 84·13-s − 61·17-s − 151·19-s − 10·21-s − 58·23-s + 145·27-s − 192·29-s − 18·31-s + 195·33-s + 138·37-s + 420·39-s + 229·41-s + 164·43-s − 212·47-s − 339·49-s + 305·51-s − 578·53-s + 755·57-s + 336·59-s − 858·61-s − 4·63-s + 209·67-s + 290·69-s + ⋯ |
L(s) = 1 | − 0.962·3-s + 0.107·7-s − 0.0740·9-s − 1.06·11-s − 1.79·13-s − 0.870·17-s − 1.82·19-s − 0.103·21-s − 0.525·23-s + 1.03·27-s − 1.22·29-s − 0.104·31-s + 1.02·33-s + 0.613·37-s + 1.72·39-s + 0.872·41-s + 0.581·43-s − 0.657·47-s − 0.988·49-s + 0.837·51-s − 1.49·53-s + 1.75·57-s + 0.741·59-s − 1.80·61-s − 0.00799·63-s + 0.381·67-s + 0.505·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 5 T + p^{3} T^{2} \) |
| 7 | \( 1 - 2 T + p^{3} T^{2} \) |
| 11 | \( 1 + 39 T + p^{3} T^{2} \) |
| 13 | \( 1 + 84 T + p^{3} T^{2} \) |
| 17 | \( 1 + 61 T + p^{3} T^{2} \) |
| 19 | \( 1 + 151 T + p^{3} T^{2} \) |
| 23 | \( 1 + 58 T + p^{3} T^{2} \) |
| 29 | \( 1 + 192 T + p^{3} T^{2} \) |
| 31 | \( 1 + 18 T + p^{3} T^{2} \) |
| 37 | \( 1 - 138 T + p^{3} T^{2} \) |
| 41 | \( 1 - 229 T + p^{3} T^{2} \) |
| 43 | \( 1 - 164 T + p^{3} T^{2} \) |
| 47 | \( 1 + 212 T + p^{3} T^{2} \) |
| 53 | \( 1 + 578 T + p^{3} T^{2} \) |
| 59 | \( 1 - 336 T + p^{3} T^{2} \) |
| 61 | \( 1 + 858 T + p^{3} T^{2} \) |
| 67 | \( 1 - 209 T + p^{3} T^{2} \) |
| 71 | \( 1 + 780 T + p^{3} T^{2} \) |
| 73 | \( 1 + 403 T + p^{3} T^{2} \) |
| 79 | \( 1 + 230 T + p^{3} T^{2} \) |
| 83 | \( 1 - 1293 T + p^{3} T^{2} \) |
| 89 | \( 1 + 1369 T + p^{3} T^{2} \) |
| 97 | \( 1 - 382 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.117302036654077042452324726487, −7.44040983733797533097619005938, −6.48001203918006730239959205115, −5.79302437289555283891312692279, −4.89263208113654345457682660750, −4.37095742375389981651409657518, −2.77759834763033318546225377102, −2.00496523756250707031149561131, 0, 0,
2.00496523756250707031149561131, 2.77759834763033318546225377102, 4.37095742375389981651409657518, 4.89263208113654345457682660750, 5.79302437289555283891312692279, 6.48001203918006730239959205115, 7.44040983733797533097619005938, 8.117302036654077042452324726487