L(s) = 1 | − 5·3-s + 2·7-s − 2·9-s − 39·11-s − 84·13-s − 61·17-s − 151·19-s − 10·21-s − 58·23-s + 145·27-s − 192·29-s − 18·31-s + 195·33-s + 138·37-s + 420·39-s + 229·41-s + 164·43-s − 212·47-s − 339·49-s + 305·51-s − 578·53-s + 755·57-s + 336·59-s − 858·61-s − 4·63-s + 209·67-s + 290·69-s + ⋯ |
L(s) = 1 | − 0.962·3-s + 0.107·7-s − 0.0740·9-s − 1.06·11-s − 1.79·13-s − 0.870·17-s − 1.82·19-s − 0.103·21-s − 0.525·23-s + 1.03·27-s − 1.22·29-s − 0.104·31-s + 1.02·33-s + 0.613·37-s + 1.72·39-s + 0.872·41-s + 0.581·43-s − 0.657·47-s − 0.988·49-s + 0.837·51-s − 1.49·53-s + 1.75·57-s + 0.741·59-s − 1.80·61-s − 0.00799·63-s + 0.381·67-s + 0.505·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+5T+p3T2 |
| 7 | 1−2T+p3T2 |
| 11 | 1+39T+p3T2 |
| 13 | 1+84T+p3T2 |
| 17 | 1+61T+p3T2 |
| 19 | 1+151T+p3T2 |
| 23 | 1+58T+p3T2 |
| 29 | 1+192T+p3T2 |
| 31 | 1+18T+p3T2 |
| 37 | 1−138T+p3T2 |
| 41 | 1−229T+p3T2 |
| 43 | 1−164T+p3T2 |
| 47 | 1+212T+p3T2 |
| 53 | 1+578T+p3T2 |
| 59 | 1−336T+p3T2 |
| 61 | 1+858T+p3T2 |
| 67 | 1−209T+p3T2 |
| 71 | 1+780T+p3T2 |
| 73 | 1+403T+p3T2 |
| 79 | 1+230T+p3T2 |
| 83 | 1−1293T+p3T2 |
| 89 | 1+1369T+p3T2 |
| 97 | 1−382T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.117302036654077042452324726487, −7.44040983733797533097619005938, −6.48001203918006730239959205115, −5.79302437289555283891312692279, −4.89263208113654345457682660750, −4.37095742375389981651409657518, −2.77759834763033318546225377102, −2.00496523756250707031149561131, 0, 0,
2.00496523756250707031149561131, 2.77759834763033318546225377102, 4.37095742375389981651409657518, 4.89263208113654345457682660750, 5.79302437289555283891312692279, 6.48001203918006730239959205115, 7.44040983733797533097619005938, 8.117302036654077042452324726487