L(s) = 1 | − 2.23·3-s + 4.47·7-s + 2.00·9-s + 2.23·11-s + 4·13-s + 7·17-s − 6.70·19-s − 10.0·21-s − 4.47·23-s + 2.23·27-s − 4.47·31-s − 5.00·33-s + 2·37-s − 8.94·39-s + 5·41-s − 8.94·47-s + 13.0·49-s − 15.6·51-s + 6·53-s + 15.0·57-s + 8.94·59-s − 10·61-s + 8.94·63-s + 2.23·67-s + 10.0·69-s + 8.94·71-s + 9·73-s + ⋯ |
L(s) = 1 | − 1.29·3-s + 1.69·7-s + 0.666·9-s + 0.674·11-s + 1.10·13-s + 1.69·17-s − 1.53·19-s − 2.18·21-s − 0.932·23-s + 0.430·27-s − 0.803·31-s − 0.870·33-s + 0.328·37-s − 1.43·39-s + 0.780·41-s − 1.30·47-s + 1.85·49-s − 2.19·51-s + 0.824·53-s + 1.98·57-s + 1.16·59-s − 1.28·61-s + 1.12·63-s + 0.273·67-s + 1.20·69-s + 1.06·71-s + 1.05·73-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.438214582 |
L(21) |
≈ |
1.438214582 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.23T+3T2 |
| 7 | 1−4.47T+7T2 |
| 11 | 1−2.23T+11T2 |
| 13 | 1−4T+13T2 |
| 17 | 1−7T+17T2 |
| 19 | 1+6.70T+19T2 |
| 23 | 1+4.47T+23T2 |
| 29 | 1+29T2 |
| 31 | 1+4.47T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1−5T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+8.94T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1−8.94T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1−2.23T+67T2 |
| 71 | 1−8.94T+71T2 |
| 73 | 1−9T+73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1−11.1T+83T2 |
| 89 | 1+5T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.474626111714987005105452428289, −8.351852504600398419862760046948, −7.996825105458390711585015727874, −6.81597589739661095394337101429, −5.97216720530962660687726711371, −5.44232202253705255954242354875, −4.52793571040102260089164909665, −3.73742767373973948123899984573, −1.90743131121157376759686576618, −0.971631826011971749588523265304,
0.971631826011971749588523265304, 1.90743131121157376759686576618, 3.73742767373973948123899984573, 4.52793571040102260089164909665, 5.44232202253705255954242354875, 5.97216720530962660687726711371, 6.81597589739661095394337101429, 7.996825105458390711585015727874, 8.351852504600398419862760046948, 9.474626111714987005105452428289