Properties

Label 2-40e2-1.1-c1-0-9
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·3-s + 4.47·7-s + 2.00·9-s + 2.23·11-s + 4·13-s + 7·17-s − 6.70·19-s − 10.0·21-s − 4.47·23-s + 2.23·27-s − 4.47·31-s − 5.00·33-s + 2·37-s − 8.94·39-s + 5·41-s − 8.94·47-s + 13.0·49-s − 15.6·51-s + 6·53-s + 15.0·57-s + 8.94·59-s − 10·61-s + 8.94·63-s + 2.23·67-s + 10.0·69-s + 8.94·71-s + 9·73-s + ⋯
L(s)  = 1  − 1.29·3-s + 1.69·7-s + 0.666·9-s + 0.674·11-s + 1.10·13-s + 1.69·17-s − 1.53·19-s − 2.18·21-s − 0.932·23-s + 0.430·27-s − 0.803·31-s − 0.870·33-s + 0.328·37-s − 1.43·39-s + 0.780·41-s − 1.30·47-s + 1.85·49-s − 2.19·51-s + 0.824·53-s + 1.98·57-s + 1.16·59-s − 1.28·61-s + 1.12·63-s + 0.273·67-s + 1.20·69-s + 1.06·71-s + 1.05·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.438214582\)
\(L(\frac12)\) \(\approx\) \(1.438214582\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2.23T + 3T^{2} \)
7 \( 1 - 4.47T + 7T^{2} \)
11 \( 1 - 2.23T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 - 7T + 17T^{2} \)
19 \( 1 + 6.70T + 19T^{2} \)
23 \( 1 + 4.47T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 4.47T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 5T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 8.94T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 8.94T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 - 2.23T + 67T^{2} \)
71 \( 1 - 8.94T + 71T^{2} \)
73 \( 1 - 9T + 73T^{2} \)
79 \( 1 - 4.47T + 79T^{2} \)
83 \( 1 - 11.1T + 83T^{2} \)
89 \( 1 + 5T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.474626111714987005105452428289, −8.351852504600398419862760046948, −7.996825105458390711585015727874, −6.81597589739661095394337101429, −5.97216720530962660687726711371, −5.44232202253705255954242354875, −4.52793571040102260089164909665, −3.73742767373973948123899984573, −1.90743131121157376759686576618, −0.971631826011971749588523265304, 0.971631826011971749588523265304, 1.90743131121157376759686576618, 3.73742767373973948123899984573, 4.52793571040102260089164909665, 5.44232202253705255954242354875, 5.97216720530962660687726711371, 6.81597589739661095394337101429, 7.996825105458390711585015727874, 8.351852504600398419862760046948, 9.474626111714987005105452428289

Graph of the $Z$-function along the critical line