Properties

Label 2-40e2-1.1-c1-0-3
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.23·3-s + 0.763·7-s + 7.47·9-s − 2.47·21-s − 5.70·23-s − 14.4·27-s + 6·29-s − 4.47·41-s − 11.2·43-s + 13.7·47-s − 6.41·49-s + 13.4·61-s + 5.70·63-s + 8.18·67-s + 18.4·69-s + 24.4·81-s + 17.7·83-s − 19.4·87-s + 6·89-s + 18·101-s + 20.1·103-s + 6.29·107-s − 13.4·109-s + ⋯
L(s)  = 1  − 1.86·3-s + 0.288·7-s + 2.49·9-s − 0.539·21-s − 1.19·23-s − 2.78·27-s + 1.11·29-s − 0.698·41-s − 1.71·43-s + 1.99·47-s − 0.916·49-s + 1.71·61-s + 0.719·63-s + 0.999·67-s + 2.22·69-s + 2.71·81-s + 1.94·83-s − 2.08·87-s + 0.635·89-s + 1.79·101-s + 1.98·103-s + 0.608·107-s − 1.28·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8053339245\)
\(L(\frac12)\) \(\approx\) \(0.8053339245\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 3.23T + 3T^{2} \)
7 \( 1 - 0.763T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 5.70T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 + 11.2T + 43T^{2} \)
47 \( 1 - 13.7T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 13.4T + 61T^{2} \)
67 \( 1 - 8.18T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 17.7T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.808634071172554708725211779728, −8.553190499172138405910183511041, −7.62561266042530916678711360244, −6.72016697862793868423748699054, −6.17364264952357770932618056764, −5.29369115774265646522695955691, −4.69630400834468146692411967977, −3.72895650149875186242656031563, −1.96314886680260062258064664354, −0.69687543080154082339848196756, 0.69687543080154082339848196756, 1.96314886680260062258064664354, 3.72895650149875186242656031563, 4.69630400834468146692411967977, 5.29369115774265646522695955691, 6.17364264952357770932618056764, 6.72016697862793868423748699054, 7.62561266042530916678711360244, 8.553190499172138405910183511041, 9.808634071172554708725211779728

Graph of the $Z$-function along the critical line