L(s) = 1 | − 3.23·3-s + 0.763·7-s + 7.47·9-s − 2.47·21-s − 5.70·23-s − 14.4·27-s + 6·29-s − 4.47·41-s − 11.2·43-s + 13.7·47-s − 6.41·49-s + 13.4·61-s + 5.70·63-s + 8.18·67-s + 18.4·69-s + 24.4·81-s + 17.7·83-s − 19.4·87-s + 6·89-s + 18·101-s + 20.1·103-s + 6.29·107-s − 13.4·109-s + ⋯ |
L(s) = 1 | − 1.86·3-s + 0.288·7-s + 2.49·9-s − 0.539·21-s − 1.19·23-s − 2.78·27-s + 1.11·29-s − 0.698·41-s − 1.71·43-s + 1.99·47-s − 0.916·49-s + 1.71·61-s + 0.719·63-s + 0.999·67-s + 2.22·69-s + 2.71·81-s + 1.94·83-s − 2.08·87-s + 0.635·89-s + 1.79·101-s + 1.98·103-s + 0.608·107-s − 1.28·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8053339245\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8053339245\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 3.23T + 3T^{2} \) |
| 7 | \( 1 - 0.763T + 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + 5.70T + 23T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + 4.47T + 41T^{2} \) |
| 43 | \( 1 + 11.2T + 43T^{2} \) |
| 47 | \( 1 - 13.7T + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 13.4T + 61T^{2} \) |
| 67 | \( 1 - 8.18T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 17.7T + 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.808634071172554708725211779728, −8.553190499172138405910183511041, −7.62561266042530916678711360244, −6.72016697862793868423748699054, −6.17364264952357770932618056764, −5.29369115774265646522695955691, −4.69630400834468146692411967977, −3.72895650149875186242656031563, −1.96314886680260062258064664354, −0.69687543080154082339848196756,
0.69687543080154082339848196756, 1.96314886680260062258064664354, 3.72895650149875186242656031563, 4.69630400834468146692411967977, 5.29369115774265646522695955691, 6.17364264952357770932618056764, 6.72016697862793868423748699054, 7.62561266042530916678711360244, 8.553190499172138405910183511041, 9.808634071172554708725211779728