Properties

Label 2-4080-5.4-c1-0-18
Degree $2$
Conductor $4080$
Sign $0.980 - 0.197i$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (−2.19 + 0.440i)5-s − 1.54i·7-s − 9-s − 4.84·11-s + 0.136i·13-s + (0.440 + 2.19i)15-s + i·17-s − 8.51·19-s − 1.54·21-s + 0.206i·23-s + (4.61 − 1.93i)25-s + i·27-s − 4.31·29-s + 4.24·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (−0.980 + 0.197i)5-s − 0.583i·7-s − 0.333·9-s − 1.45·11-s + 0.0378i·13-s + (0.113 + 0.566i)15-s + 0.242i·17-s − 1.95·19-s − 0.336·21-s + 0.0430i·23-s + (0.922 − 0.386i)25-s + 0.192i·27-s − 0.800·29-s + 0.762·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.197i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 - 0.197i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $0.980 - 0.197i$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4080} (2449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 0.980 - 0.197i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7264598980\)
\(L(\frac12)\) \(\approx\) \(0.7264598980\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (2.19 - 0.440i)T \)
17 \( 1 - iT \)
good7 \( 1 + 1.54iT - 7T^{2} \)
11 \( 1 + 4.84T + 11T^{2} \)
13 \( 1 - 0.136iT - 13T^{2} \)
19 \( 1 + 8.51T + 19T^{2} \)
23 \( 1 - 0.206iT - 23T^{2} \)
29 \( 1 + 4.31T + 29T^{2} \)
31 \( 1 - 4.24T + 31T^{2} \)
37 \( 1 + 1.78iT - 37T^{2} \)
41 \( 1 - 4.16T + 41T^{2} \)
43 \( 1 + 4.77iT - 43T^{2} \)
47 \( 1 + 0.302iT - 47T^{2} \)
53 \( 1 - 12.5iT - 53T^{2} \)
59 \( 1 - 5.68T + 59T^{2} \)
61 \( 1 + 2.24T + 61T^{2} \)
67 \( 1 + 3.85iT - 67T^{2} \)
71 \( 1 - 5.16T + 71T^{2} \)
73 \( 1 - 13.5iT - 73T^{2} \)
79 \( 1 + 2.75T + 79T^{2} \)
83 \( 1 + 12.0iT - 83T^{2} \)
89 \( 1 + 6.40T + 89T^{2} \)
97 \( 1 + 3.45iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.332031768118362241361307709501, −7.63367299469220122219465789782, −7.20992872443524079443509465035, −6.36923724959197477505201987182, −5.56270244959209204036980020261, −4.52178895980476528514488856813, −3.95438797417588169691413285933, −2.88544857802712963697573441710, −2.10223496095909557039304851720, −0.61476696709494572744937641785, 0.34510645754054967910077409050, 2.18394676389384453522491048647, 2.93699720377715836367240093541, 3.91432248293250325731882576050, 4.63675360106103834938550228769, 5.26612205927288654663865716153, 6.10498083911547919481595933143, 7.01428729619999681862740715219, 7.951101543113258493513430728015, 8.330877938421510965543054162900

Graph of the $Z$-function along the critical line