Properties

Label 2-4080-1.1-c1-0-28
Degree $2$
Conductor $4080$
Sign $1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 2.37·7-s + 9-s − 0.372·11-s + 6.74·13-s − 15-s + 17-s + 2.37·19-s + 2.37·21-s + 4·23-s + 25-s + 27-s − 8.37·29-s + 10.7·31-s − 0.372·33-s − 2.37·35-s − 4.37·37-s + 6.74·39-s − 8.37·41-s − 2.74·43-s − 45-s − 0.372·47-s − 1.37·49-s + 51-s − 0.372·53-s + 0.372·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.896·7-s + 0.333·9-s − 0.112·11-s + 1.87·13-s − 0.258·15-s + 0.242·17-s + 0.544·19-s + 0.517·21-s + 0.834·23-s + 0.200·25-s + 0.192·27-s − 1.55·29-s + 1.92·31-s − 0.0648·33-s − 0.400·35-s − 0.718·37-s + 1.07·39-s − 1.30·41-s − 0.418·43-s − 0.149·45-s − 0.0543·47-s − 0.196·49-s + 0.140·51-s − 0.0511·53-s + 0.0501·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.855727240\)
\(L(\frac12)\) \(\approx\) \(2.855727240\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 - 2.37T + 7T^{2} \)
11 \( 1 + 0.372T + 11T^{2} \)
13 \( 1 - 6.74T + 13T^{2} \)
19 \( 1 - 2.37T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 8.37T + 29T^{2} \)
31 \( 1 - 10.7T + 31T^{2} \)
37 \( 1 + 4.37T + 37T^{2} \)
41 \( 1 + 8.37T + 41T^{2} \)
43 \( 1 + 2.74T + 43T^{2} \)
47 \( 1 + 0.372T + 47T^{2} \)
53 \( 1 + 0.372T + 53T^{2} \)
59 \( 1 - 3.25T + 59T^{2} \)
61 \( 1 + 1.25T + 61T^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 - 1.25T + 71T^{2} \)
73 \( 1 - 8.37T + 73T^{2} \)
79 \( 1 + 11.4T + 79T^{2} \)
83 \( 1 - 6.74T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.435351726876670139307015539618, −7.88339759916068175098963221216, −7.10353947298743953839431948333, −6.29432358965993950226331175715, −5.35438855810345216657099297732, −4.62071643035494242295630794022, −3.67943718174055574225296457129, −3.16185324677643153204082618303, −1.85326577289203764772748250484, −1.02532679188539279013011532355, 1.02532679188539279013011532355, 1.85326577289203764772748250484, 3.16185324677643153204082618303, 3.67943718174055574225296457129, 4.62071643035494242295630794022, 5.35438855810345216657099297732, 6.29432358965993950226331175715, 7.10353947298743953839431948333, 7.88339759916068175098963221216, 8.435351726876670139307015539618

Graph of the $Z$-function along the critical line