Properties

Label 2-4080-1.1-c1-0-12
Degree $2$
Conductor $4080$
Sign $1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s − 4·11-s − 15-s + 17-s − 4·19-s − 2·21-s − 4·23-s + 25-s − 27-s + 6·29-s + 8·31-s + 4·33-s + 2·35-s − 6·37-s + 8·41-s − 2·43-s + 45-s + 8·47-s − 3·49-s − 51-s + 14·53-s − 4·55-s + 4·57-s − 6·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 1.20·11-s − 0.258·15-s + 0.242·17-s − 0.917·19-s − 0.436·21-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.696·33-s + 0.338·35-s − 0.986·37-s + 1.24·41-s − 0.304·43-s + 0.149·45-s + 1.16·47-s − 3/7·49-s − 0.140·51-s + 1.92·53-s − 0.539·55-s + 0.529·57-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.624919003\)
\(L(\frac12)\) \(\approx\) \(1.624919003\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.244058657971264727455111667021, −7.85881881801700894491882667041, −6.86833485055146344043791758545, −6.15261556486240595427602564877, −5.42613862498967272760721056575, −4.80788694117905551244666391229, −4.06125348432763866604383893942, −2.73224729177077021226526060036, −1.99398978518827439771652660601, −0.74713672056689960984886962980, 0.74713672056689960984886962980, 1.99398978518827439771652660601, 2.73224729177077021226526060036, 4.06125348432763866604383893942, 4.80788694117905551244666391229, 5.42613862498967272760721056575, 6.15261556486240595427602564877, 6.86833485055146344043791758545, 7.85881881801700894491882667041, 8.244058657971264727455111667021

Graph of the $Z$-function along the critical line