Properties

Label 2-4080-1.1-c1-0-11
Degree $2$
Conductor $4080$
Sign $1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 3.37·7-s + 9-s + 5.37·11-s − 4.74·13-s − 15-s + 17-s − 3.37·19-s − 3.37·21-s + 4·23-s + 25-s + 27-s − 2.62·29-s − 0.744·31-s + 5.37·33-s + 3.37·35-s + 1.37·37-s − 4.74·39-s − 2.62·41-s + 8.74·43-s − 45-s + 5.37·47-s + 4.37·49-s + 51-s + 5.37·53-s − 5.37·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.27·7-s + 0.333·9-s + 1.61·11-s − 1.31·13-s − 0.258·15-s + 0.242·17-s − 0.773·19-s − 0.735·21-s + 0.834·23-s + 0.200·25-s + 0.192·27-s − 0.487·29-s − 0.133·31-s + 0.935·33-s + 0.570·35-s + 0.225·37-s − 0.759·39-s − 0.410·41-s + 1.33·43-s − 0.149·45-s + 0.783·47-s + 0.624·49-s + 0.140·51-s + 0.737·53-s − 0.724·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.754941603\)
\(L(\frac12)\) \(\approx\) \(1.754941603\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + 3.37T + 7T^{2} \)
11 \( 1 - 5.37T + 11T^{2} \)
13 \( 1 + 4.74T + 13T^{2} \)
19 \( 1 + 3.37T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 2.62T + 29T^{2} \)
31 \( 1 + 0.744T + 31T^{2} \)
37 \( 1 - 1.37T + 37T^{2} \)
41 \( 1 + 2.62T + 41T^{2} \)
43 \( 1 - 8.74T + 43T^{2} \)
47 \( 1 - 5.37T + 47T^{2} \)
53 \( 1 - 5.37T + 53T^{2} \)
59 \( 1 - 14.7T + 59T^{2} \)
61 \( 1 + 12.7T + 61T^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 - 12.7T + 71T^{2} \)
73 \( 1 - 2.62T + 73T^{2} \)
79 \( 1 - 11.4T + 79T^{2} \)
83 \( 1 + 4.74T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 + 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.567597782778986287487319925928, −7.59003537019331205463974052315, −6.94271532286028424144070321998, −6.50599032397806591395725682787, −5.49628673903428657707892695728, −4.37916662337147099731910265346, −3.80498008728810601178675228378, −3.03279550900142602566353242778, −2.13302327016523550130671628821, −0.72224126411057492790127439304, 0.72224126411057492790127439304, 2.13302327016523550130671628821, 3.03279550900142602566353242778, 3.80498008728810601178675228378, 4.37916662337147099731910265346, 5.49628673903428657707892695728, 6.50599032397806591395725682787, 6.94271532286028424144070321998, 7.59003537019331205463974052315, 8.567597782778986287487319925928

Graph of the $Z$-function along the critical line