Properties

Label 2-4056-1.1-c1-0-33
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 2.60·7-s + 9-s − 2.60·11-s + 15-s + 1.60·17-s + 6.60·19-s + 2.60·21-s + 2.60·23-s − 4·25-s + 27-s + 3·29-s − 5.21·31-s − 2.60·33-s + 2.60·35-s + 2.39·37-s + 11.6·41-s − 2.60·43-s + 45-s + 1.39·47-s − 0.211·49-s + 1.60·51-s + 3·53-s − 2.60·55-s + 6.60·57-s − 9.21·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.984·7-s + 0.333·9-s − 0.785·11-s + 0.258·15-s + 0.389·17-s + 1.51·19-s + 0.568·21-s + 0.543·23-s − 0.800·25-s + 0.192·27-s + 0.557·29-s − 0.935·31-s − 0.453·33-s + 0.440·35-s + 0.393·37-s + 1.81·41-s − 0.397·43-s + 0.149·45-s + 0.203·47-s − 0.0301·49-s + 0.224·51-s + 0.412·53-s − 0.351·55-s + 0.874·57-s − 1.19·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.069856076\)
\(L(\frac12)\) \(\approx\) \(3.069856076\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - T + 5T^{2} \)
7 \( 1 - 2.60T + 7T^{2} \)
11 \( 1 + 2.60T + 11T^{2} \)
17 \( 1 - 1.60T + 17T^{2} \)
19 \( 1 - 6.60T + 19T^{2} \)
23 \( 1 - 2.60T + 23T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 + 5.21T + 31T^{2} \)
37 \( 1 - 2.39T + 37T^{2} \)
41 \( 1 - 11.6T + 41T^{2} \)
43 \( 1 + 2.60T + 43T^{2} \)
47 \( 1 - 1.39T + 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 + 9.21T + 59T^{2} \)
61 \( 1 + 7.60T + 61T^{2} \)
67 \( 1 - 10.6T + 67T^{2} \)
71 \( 1 - 9.39T + 71T^{2} \)
73 \( 1 + 7T + 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 - 11.8T + 83T^{2} \)
89 \( 1 - 16.4T + 89T^{2} \)
97 \( 1 + 11.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.252189527552748129295664608403, −7.77113233235671691382517770559, −7.27609295812217943033153849336, −6.13514196085818447930594990390, −5.33404816422257962715496742794, −4.81950428122322735099341672722, −3.75248119052276745197935949419, −2.85958004112616051843198380385, −2.02406357649678618250455201536, −1.03679981083505634835911507223, 1.03679981083505634835911507223, 2.02406357649678618250455201536, 2.85958004112616051843198380385, 3.75248119052276745197935949419, 4.81950428122322735099341672722, 5.33404816422257962715496742794, 6.13514196085818447930594990390, 7.27609295812217943033153849336, 7.77113233235671691382517770559, 8.252189527552748129295664608403

Graph of the $Z$-function along the critical line