Properties

Label 2-4056-1.1-c1-0-28
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3.34·5-s − 2.12·7-s + 9-s + 5.44·11-s − 3.34·15-s − 6.68·17-s + 7.70·19-s + 2.12·21-s + 7.16·23-s + 6.20·25-s − 27-s − 2.79·29-s − 1.30·31-s − 5.44·33-s − 7.12·35-s − 6.38·37-s + 9.98·41-s − 1.95·43-s + 3.34·45-s + 5.32·47-s − 2.46·49-s + 6.68·51-s + 11.2·53-s + 18.2·55-s − 7.70·57-s − 6.53·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.49·5-s − 0.804·7-s + 0.333·9-s + 1.64·11-s − 0.864·15-s − 1.62·17-s + 1.76·19-s + 0.464·21-s + 1.49·23-s + 1.24·25-s − 0.192·27-s − 0.518·29-s − 0.234·31-s − 0.947·33-s − 1.20·35-s − 1.04·37-s + 1.55·41-s − 0.298·43-s + 0.498·45-s + 0.776·47-s − 0.352·49-s + 0.935·51-s + 1.54·53-s + 2.45·55-s − 1.02·57-s − 0.850·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.222347398\)
\(L(\frac12)\) \(\approx\) \(2.222347398\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 3.34T + 5T^{2} \)
7 \( 1 + 2.12T + 7T^{2} \)
11 \( 1 - 5.44T + 11T^{2} \)
17 \( 1 + 6.68T + 17T^{2} \)
19 \( 1 - 7.70T + 19T^{2} \)
23 \( 1 - 7.16T + 23T^{2} \)
29 \( 1 + 2.79T + 29T^{2} \)
31 \( 1 + 1.30T + 31T^{2} \)
37 \( 1 + 6.38T + 37T^{2} \)
41 \( 1 - 9.98T + 41T^{2} \)
43 \( 1 + 1.95T + 43T^{2} \)
47 \( 1 - 5.32T + 47T^{2} \)
53 \( 1 - 11.2T + 53T^{2} \)
59 \( 1 + 6.53T + 59T^{2} \)
61 \( 1 + 7.80T + 61T^{2} \)
67 \( 1 - 3.75T + 67T^{2} \)
71 \( 1 - 3.81T + 71T^{2} \)
73 \( 1 + 3.67T + 73T^{2} \)
79 \( 1 + 3.08T + 79T^{2} \)
83 \( 1 - 5.83T + 83T^{2} \)
89 \( 1 - 12.5T + 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.981439252058305286271771233909, −7.32601208801543790245598404447, −6.79389628665437851013972876152, −6.25452434667037497212855512706, −5.60775823493246607923847119108, −4.85504577390086839777366328965, −3.84918916572871219022892774836, −2.89406283668448176689910283477, −1.82470654782978872064257786362, −0.929161816263477894072568871219, 0.929161816263477894072568871219, 1.82470654782978872064257786362, 2.89406283668448176689910283477, 3.84918916572871219022892774836, 4.85504577390086839777366328965, 5.60775823493246607923847119108, 6.25452434667037497212855512706, 6.79389628665437851013972876152, 7.32601208801543790245598404447, 8.981439252058305286271771233909

Graph of the $Z$-function along the critical line