Properties

Label 2-4056-1.1-c1-0-23
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.16·5-s − 3.98·7-s + 9-s − 6.19·11-s + 3.16·15-s + 0.0827·17-s + 2.80·19-s − 3.98·21-s + 6.47·23-s + 5.01·25-s + 27-s + 7.19·29-s + 4.21·31-s − 6.19·33-s − 12.6·35-s + 0.190·37-s − 2.55·41-s − 6.72·43-s + 3.16·45-s + 13.0·47-s + 8.86·49-s + 0.0827·51-s + 1.86·53-s − 19.5·55-s + 2.80·57-s − 4.92·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.41·5-s − 1.50·7-s + 0.333·9-s − 1.86·11-s + 0.816·15-s + 0.0200·17-s + 0.644·19-s − 0.869·21-s + 1.35·23-s + 1.00·25-s + 0.192·27-s + 1.33·29-s + 0.756·31-s − 1.07·33-s − 2.13·35-s + 0.0312·37-s − 0.399·41-s − 1.02·43-s + 0.471·45-s + 1.89·47-s + 1.26·49-s + 0.0115·51-s + 0.255·53-s − 2.64·55-s + 0.371·57-s − 0.641·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.421009029\)
\(L(\frac12)\) \(\approx\) \(2.421009029\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 3.16T + 5T^{2} \)
7 \( 1 + 3.98T + 7T^{2} \)
11 \( 1 + 6.19T + 11T^{2} \)
17 \( 1 - 0.0827T + 17T^{2} \)
19 \( 1 - 2.80T + 19T^{2} \)
23 \( 1 - 6.47T + 23T^{2} \)
29 \( 1 - 7.19T + 29T^{2} \)
31 \( 1 - 4.21T + 31T^{2} \)
37 \( 1 - 0.190T + 37T^{2} \)
41 \( 1 + 2.55T + 41T^{2} \)
43 \( 1 + 6.72T + 43T^{2} \)
47 \( 1 - 13.0T + 47T^{2} \)
53 \( 1 - 1.86T + 53T^{2} \)
59 \( 1 + 4.92T + 59T^{2} \)
61 \( 1 - 14.7T + 61T^{2} \)
67 \( 1 - 6.22T + 67T^{2} \)
71 \( 1 + 6.19T + 71T^{2} \)
73 \( 1 - 13.8T + 73T^{2} \)
79 \( 1 - 14.6T + 79T^{2} \)
83 \( 1 + 6.44T + 83T^{2} \)
89 \( 1 - 11.3T + 89T^{2} \)
97 \( 1 - 16.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.576142349505211775733803343421, −7.70516711843952141152504818171, −6.85082107553449063147145658403, −6.32102772484311841797992982879, −5.41035745159016185796820132852, −4.94450716821415809806367543006, −3.50658588176978326064733777632, −2.74401980514231676635807727137, −2.37081275213468629777437291038, −0.848993603573427775272206251365, 0.848993603573427775272206251365, 2.37081275213468629777437291038, 2.74401980514231676635807727137, 3.50658588176978326064733777632, 4.94450716821415809806367543006, 5.41035745159016185796820132852, 6.32102772484311841797992982879, 6.85082107553449063147145658403, 7.70516711843952141152504818171, 8.576142349505211775733803343421

Graph of the $Z$-function along the critical line