Properties

Label 2-4056-1.1-c1-0-16
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 0.408·5-s + 1.71·7-s + 9-s − 4.20·11-s − 0.408·15-s + 5.92·17-s + 0.457·19-s − 1.71·21-s + 2.66·23-s − 4.83·25-s − 27-s − 0.393·29-s − 5.77·31-s + 4.20·33-s + 0.701·35-s + 6.31·37-s + 5.39·41-s + 3.71·43-s + 0.408·45-s + 6.07·47-s − 4.04·49-s − 5.92·51-s − 1.69·53-s − 1.71·55-s − 0.457·57-s − 6.69·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.182·5-s + 0.649·7-s + 0.333·9-s − 1.26·11-s − 0.105·15-s + 1.43·17-s + 0.104·19-s − 0.375·21-s + 0.556·23-s − 0.966·25-s − 0.192·27-s − 0.0731·29-s − 1.03·31-s + 0.732·33-s + 0.118·35-s + 1.03·37-s + 0.842·41-s + 0.566·43-s + 0.0608·45-s + 0.885·47-s − 0.577·49-s − 0.830·51-s − 0.233·53-s − 0.231·55-s − 0.0605·57-s − 0.871·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.593600789\)
\(L(\frac12)\) \(\approx\) \(1.593600789\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 0.408T + 5T^{2} \)
7 \( 1 - 1.71T + 7T^{2} \)
11 \( 1 + 4.20T + 11T^{2} \)
17 \( 1 - 5.92T + 17T^{2} \)
19 \( 1 - 0.457T + 19T^{2} \)
23 \( 1 - 2.66T + 23T^{2} \)
29 \( 1 + 0.393T + 29T^{2} \)
31 \( 1 + 5.77T + 31T^{2} \)
37 \( 1 - 6.31T + 37T^{2} \)
41 \( 1 - 5.39T + 41T^{2} \)
43 \( 1 - 3.71T + 43T^{2} \)
47 \( 1 - 6.07T + 47T^{2} \)
53 \( 1 + 1.69T + 53T^{2} \)
59 \( 1 + 6.69T + 59T^{2} \)
61 \( 1 - 9.84T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 - 11.8T + 73T^{2} \)
79 \( 1 - 4.58T + 79T^{2} \)
83 \( 1 + 10.6T + 83T^{2} \)
89 \( 1 + 3.97T + 89T^{2} \)
97 \( 1 - 0.852T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.175289840742380468662222475565, −7.73663989064043965043498191406, −7.12334863759708478524488453331, −5.93559969706173669569075907086, −5.52823239874079120072419638327, −4.87179085948096073317753387735, −3.93156765471963610603419181678, −2.89370740211512271968668767918, −1.89912466543744867468226374615, −0.75136488953602182380572844961, 0.75136488953602182380572844961, 1.89912466543744867468226374615, 2.89370740211512271968668767918, 3.93156765471963610603419181678, 4.87179085948096073317753387735, 5.52823239874079120072419638327, 5.93559969706173669569075907086, 7.12334863759708478524488453331, 7.73663989064043965043498191406, 8.175289840742380468662222475565

Graph of the $Z$-function along the critical line