Properties

Label 2-4056-1.1-c1-0-1
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3.90·5-s + 0.0794·7-s + 9-s − 1.50·11-s + 3.90·15-s − 6.52·17-s + 0.786·19-s − 0.0794·21-s − 7.03·23-s + 10.2·25-s − 27-s + 6.15·29-s − 1.43·31-s + 1.50·33-s − 0.310·35-s − 9.23·37-s − 7.75·41-s + 1.06·43-s − 3.90·45-s − 12.7·47-s − 6.99·49-s + 6.52·51-s + 2.73·53-s + 5.87·55-s − 0.786·57-s − 10.3·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.74·5-s + 0.0300·7-s + 0.333·9-s − 0.453·11-s + 1.00·15-s − 1.58·17-s + 0.180·19-s − 0.0173·21-s − 1.46·23-s + 2.05·25-s − 0.192·27-s + 1.14·29-s − 0.258·31-s + 0.261·33-s − 0.0524·35-s − 1.51·37-s − 1.21·41-s + 0.162·43-s − 0.582·45-s − 1.86·47-s − 0.999·49-s + 0.913·51-s + 0.375·53-s + 0.792·55-s − 0.104·57-s − 1.35·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3585770297\)
\(L(\frac12)\) \(\approx\) \(0.3585770297\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 3.90T + 5T^{2} \)
7 \( 1 - 0.0794T + 7T^{2} \)
11 \( 1 + 1.50T + 11T^{2} \)
17 \( 1 + 6.52T + 17T^{2} \)
19 \( 1 - 0.786T + 19T^{2} \)
23 \( 1 + 7.03T + 23T^{2} \)
29 \( 1 - 6.15T + 29T^{2} \)
31 \( 1 + 1.43T + 31T^{2} \)
37 \( 1 + 9.23T + 37T^{2} \)
41 \( 1 + 7.75T + 41T^{2} \)
43 \( 1 - 1.06T + 43T^{2} \)
47 \( 1 + 12.7T + 47T^{2} \)
53 \( 1 - 2.73T + 53T^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 - 7.92T + 61T^{2} \)
67 \( 1 - 7.80T + 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 + 4.16T + 73T^{2} \)
79 \( 1 - 3.83T + 79T^{2} \)
83 \( 1 + 9.04T + 83T^{2} \)
89 \( 1 - 4.75T + 89T^{2} \)
97 \( 1 + 6.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.213786094176718627294322056249, −7.87052375857692621089668709114, −6.80850475057607143350069741157, −6.55919319607380232725193469912, −5.23994208737904123015801505295, −4.64674314239747487298797171113, −3.94027966150774706194639887340, −3.17204999985260139209035647722, −1.89656010645469686629751257495, −0.33833339390183669594404512242, 0.33833339390183669594404512242, 1.89656010645469686629751257495, 3.17204999985260139209035647722, 3.94027966150774706194639887340, 4.64674314239747487298797171113, 5.23994208737904123015801505295, 6.55919319607380232725193469912, 6.80850475057607143350069741157, 7.87052375857692621089668709114, 8.213786094176718627294322056249

Graph of the $Z$-function along the critical line