Properties

Label 2-4050-1.1-c1-0-13
Degree $2$
Conductor $4050$
Sign $1$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3.37·7-s + 8-s − 4.37·11-s + 6.74·13-s − 3.37·14-s + 16-s + 1.62·17-s − 2.37·19-s − 4.37·22-s − 1.37·23-s + 6.74·26-s − 3.37·28-s + 1.37·29-s + 4.74·31-s + 32-s + 1.62·34-s + 4·37-s − 2.37·38-s − 3·41-s + 5.62·43-s − 4.37·44-s − 1.37·46-s + 7.37·47-s + 4.37·49-s + 6.74·52-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.27·7-s + 0.353·8-s − 1.31·11-s + 1.87·13-s − 0.901·14-s + 0.250·16-s + 0.394·17-s − 0.544·19-s − 0.932·22-s − 0.286·23-s + 1.32·26-s − 0.637·28-s + 0.254·29-s + 0.852·31-s + 0.176·32-s + 0.279·34-s + 0.657·37-s − 0.384·38-s − 0.468·41-s + 0.858·43-s − 0.659·44-s − 0.202·46-s + 1.07·47-s + 0.624·49-s + 0.935·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.523792573\)
\(L(\frac12)\) \(\approx\) \(2.523792573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 3.37T + 7T^{2} \)
11 \( 1 + 4.37T + 11T^{2} \)
13 \( 1 - 6.74T + 13T^{2} \)
17 \( 1 - 1.62T + 17T^{2} \)
19 \( 1 + 2.37T + 19T^{2} \)
23 \( 1 + 1.37T + 23T^{2} \)
29 \( 1 - 1.37T + 29T^{2} \)
31 \( 1 - 4.74T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 + 3T + 41T^{2} \)
43 \( 1 - 5.62T + 43T^{2} \)
47 \( 1 - 7.37T + 47T^{2} \)
53 \( 1 - 11.4T + 53T^{2} \)
59 \( 1 - 4.37T + 59T^{2} \)
61 \( 1 + 8.11T + 61T^{2} \)
67 \( 1 - 7T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 3.11T + 73T^{2} \)
79 \( 1 - 2T + 79T^{2} \)
83 \( 1 + 7.37T + 83T^{2} \)
89 \( 1 - 16.1T + 89T^{2} \)
97 \( 1 - 8.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.393654551240342517120479518039, −7.63630938807426205208881495949, −6.77219343662329818992683449477, −6.01520250820010483849625892974, −5.73264286940115781230820259714, −4.58719207551464155698526797573, −3.75198076459123684632222357284, −3.10430723010243721441050799738, −2.28268008657432106710816115058, −0.805764038373834662278906042714, 0.805764038373834662278906042714, 2.28268008657432106710816115058, 3.10430723010243721441050799738, 3.75198076459123684632222357284, 4.58719207551464155698526797573, 5.73264286940115781230820259714, 6.01520250820010483849625892974, 6.77219343662329818992683449477, 7.63630938807426205208881495949, 8.393654551240342517120479518039

Graph of the $Z$-function along the critical line