L(s) = 1 | + (−1 − 1.73i)2-s + (−0.999 + 1.73i)4-s + (−0.5 + 0.866i)5-s + 1.99·10-s + (−2.5 − 4.33i)11-s + (−2 + 3.46i)13-s + (1.99 + 3.46i)16-s − 4·17-s − 5·19-s + (−1 − 1.73i)20-s + (−5 + 8.66i)22-s + (−3 + 5.19i)23-s + (−0.499 − 0.866i)25-s + 7.99·26-s + (2.5 + 4.33i)29-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.499 + 0.866i)4-s + (−0.223 + 0.387i)5-s + 0.632·10-s + (−0.753 − 1.30i)11-s + (−0.554 + 0.960i)13-s + (0.499 + 0.866i)16-s − 0.970·17-s − 1.14·19-s + (−0.223 − 0.387i)20-s + (−1.06 + 1.84i)22-s + (−0.625 + 1.08i)23-s + (−0.0999 − 0.173i)25-s + 1.56·26-s + (0.464 + 0.804i)29-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.173−0.984i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.173−0.984i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 405, ( :1/2), −0.173−0.984i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 2 | 1+(1+1.73i)T+(−1+1.73i)T2 |
| 7 | 1+(−3.5+6.06i)T2 |
| 11 | 1+(2.5+4.33i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2−3.46i)T+(−6.5−11.2i)T2 |
| 17 | 1+4T+17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+(3−5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.5−4.33i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.5+7.79i)T+(−15.5−26.8i)T2 |
| 37 | 1+10T+37T2 |
| 41 | 1+(3.5−6.06i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1−1.73i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1+1.73i)T+(−23.5+40.7i)T2 |
| 53 | 1−8T+53T2 |
| 59 | 1+(−0.5+0.866i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1−1.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3−5.19i)T+(−33.5−58.0i)T2 |
| 71 | 1−T+71T2 |
| 73 | 1+8T+73T2 |
| 79 | 1+(6+10.3i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3+5.19i)T+(−41.5+71.8i)T2 |
| 89 | 1+9T+89T2 |
| 97 | 1+(7+12.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62294358370808802227290137830, −9.954365582767116809296842721188, −8.840443085737637672864224671104, −8.282841994599585323249472568018, −6.92315502455055926209526901200, −5.82378390722174223213057106595, −4.23024492524889618882193378555, −3.05208159602070366829036127000, −1.98958486613321615527244991942, 0,
2.47450709069665290588655485953, 4.44088180038416228567280094359, 5.34129194771495489156303064358, 6.57561704634863464608148049758, 7.29090938036221534532074082949, 8.265369837306651636680986082671, 8.761550421534312872876249621153, 10.02796411348234986452558275639, 10.52755959451468544356437132672