L(s) = 1 | + (−1 − 1.73i)2-s + (−0.999 + 1.73i)4-s + (−0.5 + 0.866i)5-s + 1.99·10-s + (−2.5 − 4.33i)11-s + (−2 + 3.46i)13-s + (1.99 + 3.46i)16-s − 4·17-s − 5·19-s + (−1 − 1.73i)20-s + (−5 + 8.66i)22-s + (−3 + 5.19i)23-s + (−0.499 − 0.866i)25-s + 7.99·26-s + (2.5 + 4.33i)29-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.499 + 0.866i)4-s + (−0.223 + 0.387i)5-s + 0.632·10-s + (−0.753 − 1.30i)11-s + (−0.554 + 0.960i)13-s + (0.499 + 0.866i)16-s − 0.970·17-s − 1.14·19-s + (−0.223 − 0.387i)20-s + (−1.06 + 1.84i)22-s + (−0.625 + 1.08i)23-s + (−0.0999 − 0.173i)25-s + 1.56·26-s + (0.464 + 0.804i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (1 + 1.73i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.5 + 4.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4T + 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.5 + 7.79i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10T + 37T^{2} \) |
| 41 | \( 1 + (3.5 - 6.06i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1 - 1.73i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1 + 1.73i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 8T + 53T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3 - 5.19i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - T + 71T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 + (6 + 10.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3 + 5.19i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 + (7 + 12.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62294358370808802227290137830, −9.954365582767116809296842721188, −8.840443085737637672864224671104, −8.282841994599585323249472568018, −6.92315502455055926209526901200, −5.82378390722174223213057106595, −4.23024492524889618882193378555, −3.05208159602070366829036127000, −1.98958486613321615527244991942, 0,
2.47450709069665290588655485953, 4.44088180038416228567280094359, 5.34129194771495489156303064358, 6.57561704634863464608148049758, 7.29090938036221534532074082949, 8.265369837306651636680986082671, 8.761550421534312872876249621153, 10.02796411348234986452558275639, 10.52755959451468544356437132672