L(s) = 1 | + (−0.578 − 2.15i)2-s + (−0.866 + 0.5i)4-s + (4.89 − 1.00i)5-s + (−1.83 − 6.83i)7-s + (−4.74 − 4.74i)8-s + (−5 − 10.0i)10-s + (−7.90 + 13.6i)11-s + (3.66 − 13.6i)13-s + (−13.6 + 7.90i)14-s + (−9.49 + 16.4i)16-s + (3.16 − 3.16i)17-s − 18i·19-s + (−3.74 + 3.31i)20-s + (34.1 + 9.15i)22-s + (1.15 − 4.31i)23-s + ⋯ |
L(s) = 1 | + (−0.289 − 1.07i)2-s + (−0.216 + 0.125i)4-s + (0.979 − 0.200i)5-s + (−0.261 − 0.975i)7-s + (−0.592 − 0.592i)8-s + (−0.5 − 1.00i)10-s + (−0.718 + 1.24i)11-s + (0.281 − 1.05i)13-s + (−0.978 + 0.564i)14-s + (−0.593 + 1.02i)16-s + (0.186 − 0.186i)17-s − 0.947i·19-s + (−0.187 + 0.165i)20-s + (1.55 + 0.415i)22-s + (0.0503 − 0.187i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.999−0.00266i)Λ(3−s)
Λ(s)=(=(405s/2ΓC(s+1)L(s)(−0.999−0.00266i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.999−0.00266i
|
Analytic conductor: |
11.0354 |
Root analytic conductor: |
3.32196 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(298,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1), −0.999−0.00266i)
|
Particular Values
L(23) |
≈ |
0.00185079+1.39142i |
L(21) |
≈ |
0.00185079+1.39142i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−4.89+1.00i)T |
good | 2 | 1+(0.578+2.15i)T+(−3.46+2i)T2 |
| 7 | 1+(1.83+6.83i)T+(−42.4+24.5i)T2 |
| 11 | 1+(7.90−13.6i)T+(−60.5−104.i)T2 |
| 13 | 1+(−3.66+13.6i)T+(−146.−84.5i)T2 |
| 17 | 1+(−3.16+3.16i)T−289iT2 |
| 19 | 1+18iT−361T2 |
| 23 | 1+(−1.15+4.31i)T+(−458.−264.5i)T2 |
| 29 | 1+(41.0+23.7i)T+(420.5+728.i)T2 |
| 31 | 1+(4+6.92i)T+(−480.5+832.i)T2 |
| 37 | 1+(−10+10i)T−1.36e3iT2 |
| 41 | 1+(−15.8−27.3i)T+(−840.5+1.45e3i)T2 |
| 43 | 1+(13.6−3.66i)T+(1.60e3−924.5i)T2 |
| 47 | 1+(−15.0−56.1i)T+(−1.91e3+1.10e3i)T2 |
| 53 | 1+(25.2+25.2i)T+2.80e3iT2 |
| 59 | 1+(41.0−23.7i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−29+50.2i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(95.6+25.6i)T+(3.88e3+2.24e3i)T2 |
| 71 | 1−63.2T+5.04e3T2 |
| 73 | 1+(−55−55i)T+5.32e3iT2 |
| 79 | 1+(−10.3−6i)T+(3.12e3+5.40e3i)T2 |
| 83 | 1+(−73.4+19.6i)T+(5.96e3−3.44e3i)T2 |
| 89 | 1−7.92e3T2 |
| 97 | 1+(1.83+6.83i)T+(−8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56825604492436360903817127845, −9.800113668349454794141553387238, −9.349638864845290767118004740555, −7.83140248468933311229278226918, −6.84147411457202544339240173380, −5.71487241486456239995530710704, −4.46968934274527551023347130824, −3.04842711188112782948636152664, −2.00053678896078430869242214178, −0.62725646656248607109211676289,
2.05536650468224523762537964178, 3.28799782025716302389956245667, 5.39830571103905346020879529734, 5.84463633299566245071485931223, 6.63993391073045841483380632013, 7.77287222607639691664610541179, 8.822223606069609359750475273618, 9.214963629762623952012429592275, 10.50146890116556328365663550789, 11.43037919306720024692523330034