L(s) = 1 | + (−0.0484 − 0.0840i)2-s + (1.99 − 3.45i)4-s + (−0.121 − 4.99i)5-s + (−8.81 + 5.09i)7-s − 0.775·8-s + (−0.413 + 0.252i)10-s + (1.54 − 0.894i)11-s + (−11.8 − 6.86i)13-s + (0.855 + 0.493i)14-s + (−7.94 − 13.7i)16-s + 13.0·17-s − 16.5·19-s + (−17.5 − 9.55i)20-s + (−0.150 − 0.0867i)22-s + (−20.8 + 36.0i)23-s + ⋯ |
L(s) = 1 | + (−0.0242 − 0.0420i)2-s + (0.498 − 0.863i)4-s + (−0.0243 − 0.999i)5-s + (−1.25 + 0.727i)7-s − 0.0968·8-s + (−0.0413 + 0.0252i)10-s + (0.140 − 0.0812i)11-s + (−0.915 − 0.528i)13-s + (0.0610 + 0.0352i)14-s + (−0.496 − 0.859i)16-s + 0.769·17-s − 0.872·19-s + (−0.875 − 0.477i)20-s + (−0.00682 − 0.00394i)22-s + (−0.905 + 1.56i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0628i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.998 - 0.0628i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0198854 + 0.631914i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0198854 + 0.631914i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.121 + 4.99i)T \) |
good | 2 | \( 1 + (0.0484 + 0.0840i)T + (-2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (8.81 - 5.09i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-1.54 + 0.894i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (11.8 + 6.86i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 13.0T + 289T^{2} \) |
| 19 | \( 1 + 16.5T + 361T^{2} \) |
| 23 | \( 1 + (20.8 - 36.0i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-38.2 + 22.0i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (3.23 - 5.59i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 20.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (49.3 + 28.4i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (29.7 - 17.1i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (30.0 + 52.0i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 25.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-35.1 - 20.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (34.6 + 59.9i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (52.0 + 30.0i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 91.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 74.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-30.8 - 53.3i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (29.2 + 50.6i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 - 66.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-136. + 79.0i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17002105892221120495435551174, −9.864296429379465666715647316573, −8.942146108025709270499465490913, −7.83733246657283086762429897108, −6.54142116476814658944020005739, −5.76405533052833722604763623459, −4.93680833473710173401968748426, −3.28882955290958066443625847630, −1.90672482526575297770256074592, −0.25034476813397847062291732554,
2.42393810231065392625105058172, 3.33436690662810931290949916120, 4.31984866043263681442954659483, 6.34446504188354919947086024407, 6.75811736432144073596172249412, 7.56505323723106134072804977349, 8.656405511575599973667252560800, 10.06916440484731989031740530762, 10.35023506322583758519454876697, 11.58797273857737169136152838644