L(s) = 1 | + (2.15 + 0.578i)2-s + (0.866 + 0.5i)4-s + (−3.31 − 3.74i)5-s + (6.83 + 1.83i)7-s + (−4.74 − 4.74i)8-s + (−5 − 10i)10-s + (−7.90 − 13.6i)11-s + (−13.6 + 3.66i)13-s + (13.6 + 7.90i)14-s + (−9.49 − 16.4i)16-s + (3.16 − 3.16i)17-s − 18i·19-s + (−1.00 − 4.89i)20-s + (−9.15 − 34.1i)22-s + (−4.31 + 1.15i)23-s + ⋯ |
L(s) = 1 | + (1.07 + 0.289i)2-s + (0.216 + 0.125i)4-s + (−0.663 − 0.748i)5-s + (0.975 + 0.261i)7-s + (−0.592 − 0.592i)8-s + (−0.5 − i)10-s + (−0.718 − 1.24i)11-s + (−1.05 + 0.281i)13-s + (0.978 + 0.564i)14-s + (−0.593 − 1.02i)16-s + (0.186 − 0.186i)17-s − 0.947i·19-s + (−0.0501 − 0.244i)20-s + (−0.415 − 1.55i)22-s + (−0.187 + 0.0503i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.176+0.984i)Λ(3−s)
Λ(s)=(=(405s/2ΓC(s+1)L(s)(−0.176+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.176+0.984i
|
Analytic conductor: |
11.0354 |
Root analytic conductor: |
3.32196 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1), −0.176+0.984i)
|
Particular Values
L(23) |
≈ |
1.17472−1.40377i |
L(21) |
≈ |
1.17472−1.40377i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(3.31+3.74i)T |
good | 2 | 1+(−2.15−0.578i)T+(3.46+2i)T2 |
| 7 | 1+(−6.83−1.83i)T+(42.4+24.5i)T2 |
| 11 | 1+(7.90+13.6i)T+(−60.5+104.i)T2 |
| 13 | 1+(13.6−3.66i)T+(146.−84.5i)T2 |
| 17 | 1+(−3.16+3.16i)T−289iT2 |
| 19 | 1+18iT−361T2 |
| 23 | 1+(4.31−1.15i)T+(458.−264.5i)T2 |
| 29 | 1+(−41.0+23.7i)T+(420.5−728.i)T2 |
| 31 | 1+(4−6.92i)T+(−480.5−832.i)T2 |
| 37 | 1+(−10+10i)T−1.36e3iT2 |
| 41 | 1+(−15.8+27.3i)T+(−840.5−1.45e3i)T2 |
| 43 | 1+(−3.66+13.6i)T+(−1.60e3−924.5i)T2 |
| 47 | 1+(56.1+15.0i)T+(1.91e3+1.10e3i)T2 |
| 53 | 1+(25.2+25.2i)T+2.80e3iT2 |
| 59 | 1+(−41.0−23.7i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−29−50.2i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−25.6−95.6i)T+(−3.88e3+2.24e3i)T2 |
| 71 | 1−63.2T+5.04e3T2 |
| 73 | 1+(−55−55i)T+5.32e3iT2 |
| 79 | 1+(10.3−6i)T+(3.12e3−5.40e3i)T2 |
| 83 | 1+(19.6−73.4i)T+(−5.96e3−3.44e3i)T2 |
| 89 | 1−7.92e3T2 |
| 97 | 1+(−6.83−1.83i)T+(8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.22472552585445105783883174010, −9.834706008646479925558087178881, −8.721963373734073360052043065788, −8.042857356724882133434395128832, −6.89770848509319085774816139785, −5.50170623691002039660780574756, −4.99501916716361697928433680631, −4.10581530603600100404992290225, −2.73108853449954190467969906399, −0.54715903863425491032257209176,
2.17756299101604149336355291148, 3.30051113190840078345788710464, 4.54641298182923400719600449977, 5.00479386010629767371990815981, 6.46370384164709270136836121304, 7.70251528290692197337721884145, 8.117588985210602963336378824402, 9.783415483716555211529616640188, 10.62165611856763363431691020196, 11.49945837824783245066322110258