Properties

Label 2-405-135.122-c1-0-3
Degree $2$
Conductor $405$
Sign $0.997 + 0.0729i$
Analytic cond. $3.23394$
Root an. cond. $1.79831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.23 − 0.866i)2-s + (0.0960 + 0.264i)4-s + (2.23 + 0.140i)5-s + (0.677 + 1.45i)7-s + (−0.671 + 2.50i)8-s + (−2.63 − 2.10i)10-s + (1.78 + 2.12i)11-s + (0.176 + 0.251i)13-s + (0.420 − 2.38i)14-s + (3.43 − 2.88i)16-s + (1.88 + 7.02i)17-s + (−5.07 + 2.92i)19-s + (0.177 + 0.602i)20-s + (−0.365 − 4.17i)22-s + (−0.116 − 0.0543i)23-s + ⋯
L(s)  = 1  + (−0.874 − 0.612i)2-s + (0.0480 + 0.132i)4-s + (0.998 + 0.0626i)5-s + (0.256 + 0.549i)7-s + (−0.237 + 0.886i)8-s + (−0.834 − 0.666i)10-s + (0.538 + 0.641i)11-s + (0.0489 + 0.0698i)13-s + (0.112 − 0.637i)14-s + (0.858 − 0.720i)16-s + (0.456 + 1.70i)17-s + (−1.16 + 0.671i)19-s + (0.0396 + 0.134i)20-s + (−0.0779 − 0.890i)22-s + (−0.0243 − 0.0113i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0729i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0729i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $0.997 + 0.0729i$
Analytic conductor: \(3.23394\)
Root analytic conductor: \(1.79831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (152, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1/2),\ 0.997 + 0.0729i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.01184 - 0.0369660i\)
\(L(\frac12)\) \(\approx\) \(1.01184 - 0.0369660i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-2.23 - 0.140i)T \)
good2 \( 1 + (1.23 + 0.866i)T + (0.684 + 1.87i)T^{2} \)
7 \( 1 + (-0.677 - 1.45i)T + (-4.49 + 5.36i)T^{2} \)
11 \( 1 + (-1.78 - 2.12i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (-0.176 - 0.251i)T + (-4.44 + 12.2i)T^{2} \)
17 \( 1 + (-1.88 - 7.02i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (5.07 - 2.92i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.116 + 0.0543i)T + (14.7 + 17.6i)T^{2} \)
29 \( 1 + (1.51 + 8.60i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-4.22 + 1.53i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-2.08 + 0.558i)T + (32.0 - 18.5i)T^{2} \)
41 \( 1 + (-4.62 - 0.815i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (0.429 - 4.90i)T + (-42.3 - 7.46i)T^{2} \)
47 \( 1 + (-7.69 + 3.58i)T + (30.2 - 36.0i)T^{2} \)
53 \( 1 + (0.483 + 0.483i)T + 53iT^{2} \)
59 \( 1 + (7.43 + 6.23i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-2.50 - 0.910i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (0.884 - 0.619i)T + (22.9 - 62.9i)T^{2} \)
71 \( 1 + (9.03 + 5.21i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (6.65 + 1.78i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (-2.04 + 0.360i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (7.55 - 10.7i)T + (-28.3 - 77.9i)T^{2} \)
89 \( 1 + (-5.58 - 9.66i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (11.8 + 1.03i)T + (95.5 + 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94978953432935195365099606306, −10.19551161472311390621711436043, −9.605861325904057947697840866392, −8.707624913431797494902189933301, −7.963998164760337788392798433220, −6.28654883550746059867467762382, −5.72312925631643775027008076996, −4.25868053698845498193951442147, −2.38002499542498979933942664669, −1.57589829850090026820791324647, 0.997468405866986239595126058438, 2.94399926529676460878386637414, 4.47930976027817639198192466237, 5.79205702960526189549181450036, 6.79844321737405234907189323156, 7.47600435812684001249750872067, 8.795933744966146792501165982043, 9.120571263233791659293045776500, 10.17135610283004046741001158902, 10.94058328076309911998894802906

Graph of the $Z$-function along the critical line