L(s) = 1 | + (1.22 + 0.856i)2-s + (0.0790 + 0.217i)4-s + (−2.10 − 0.751i)5-s + (−2.03 − 4.36i)7-s + (0.683 − 2.55i)8-s + (−1.93 − 2.72i)10-s + (2.25 + 2.68i)11-s + (−2.18 − 3.11i)13-s + (1.24 − 7.08i)14-s + (3.37 − 2.83i)16-s + (0.367 + 1.37i)17-s + (1.30 − 0.750i)19-s + (−0.00328 − 0.517i)20-s + (0.455 + 5.21i)22-s + (−1.35 − 0.633i)23-s + ⋯ |
L(s) = 1 | + (0.865 + 0.605i)2-s + (0.0395 + 0.108i)4-s + (−0.941 − 0.336i)5-s + (−0.769 − 1.65i)7-s + (0.241 − 0.902i)8-s + (−0.611 − 0.861i)10-s + (0.678 + 0.808i)11-s + (−0.605 − 0.864i)13-s + (0.333 − 1.89i)14-s + (0.844 − 0.708i)16-s + (0.0891 + 0.332i)17-s + (0.298 − 0.172i)19-s + (−0.000733 − 0.115i)20-s + (0.0971 + 1.11i)22-s + (−0.283 − 0.132i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(0.387+0.921i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(0.387+0.921i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
0.387+0.921i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(152,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), 0.387+0.921i)
|
Particular Values
L(1) |
≈ |
1.22309−0.812736i |
L(21) |
≈ |
1.22309−0.812736i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(2.10+0.751i)T |
good | 2 | 1+(−1.22−0.856i)T+(0.684+1.87i)T2 |
| 7 | 1+(2.03+4.36i)T+(−4.49+5.36i)T2 |
| 11 | 1+(−2.25−2.68i)T+(−1.91+10.8i)T2 |
| 13 | 1+(2.18+3.11i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−0.367−1.37i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−1.30+0.750i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.35+0.633i)T+(14.7+17.6i)T2 |
| 29 | 1+(−0.168−0.957i)T+(−27.2+9.91i)T2 |
| 31 | 1+(2.44−0.891i)T+(23.7−19.9i)T2 |
| 37 | 1+(−6.69+1.79i)T+(32.0−18.5i)T2 |
| 41 | 1+(−0.670−0.118i)T+(38.5+14.0i)T2 |
| 43 | 1+(0.0175−0.200i)T+(−42.3−7.46i)T2 |
| 47 | 1+(−7.89+3.68i)T+(30.2−36.0i)T2 |
| 53 | 1+(2.81+2.81i)T+53iT2 |
| 59 | 1+(5.69+4.77i)T+(10.2+58.1i)T2 |
| 61 | 1+(1.08+0.396i)T+(46.7+39.2i)T2 |
| 67 | 1+(−12.5+8.79i)T+(22.9−62.9i)T2 |
| 71 | 1+(−11.1−6.42i)T+(35.5+61.4i)T2 |
| 73 | 1+(0.343+0.0920i)T+(63.2+36.5i)T2 |
| 79 | 1+(−9.66+1.70i)T+(74.2−27.0i)T2 |
| 83 | 1+(6.51−9.30i)T+(−28.3−77.9i)T2 |
| 89 | 1+(2.09+3.63i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−6.41−0.561i)T+(95.5+16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.07395326233726167116919003799, −10.14752851046835814630827583984, −9.451557855126933846683664953995, −7.82008889399151131980949153194, −7.22141755773599173949333113491, −6.46104592381420848285295890719, −5.06245763319967509543852978873, −4.16432322838963367412448289431, −3.52542698148374402631186320841, −0.75022747580311212708759917191,
2.43844860885888964601096415526, 3.29151180120175862885977858190, 4.28716593513607995012902271514, 5.51886469229684840178833381389, 6.47380843262574971369420640383, 7.78285837728443059622076771551, 8.781043472240937627163796849220, 9.513368552855250711194179844686, 11.02617996530267894865307876794, 11.77634949237087169474363420572