L(s) = 1 | + (1.22 + 0.856i)2-s + (0.0790 + 0.217i)4-s + (−2.10 − 0.751i)5-s + (−2.03 − 4.36i)7-s + (0.683 − 2.55i)8-s + (−1.93 − 2.72i)10-s + (2.25 + 2.68i)11-s + (−2.18 − 3.11i)13-s + (1.24 − 7.08i)14-s + (3.37 − 2.83i)16-s + (0.367 + 1.37i)17-s + (1.30 − 0.750i)19-s + (−0.00328 − 0.517i)20-s + (0.455 + 5.21i)22-s + (−1.35 − 0.633i)23-s + ⋯ |
L(s) = 1 | + (0.865 + 0.605i)2-s + (0.0395 + 0.108i)4-s + (−0.941 − 0.336i)5-s + (−0.769 − 1.65i)7-s + (0.241 − 0.902i)8-s + (−0.611 − 0.861i)10-s + (0.678 + 0.808i)11-s + (−0.605 − 0.864i)13-s + (0.333 − 1.89i)14-s + (0.844 − 0.708i)16-s + (0.0891 + 0.332i)17-s + (0.298 − 0.172i)19-s + (−0.000733 − 0.115i)20-s + (0.0971 + 1.11i)22-s + (−0.283 − 0.132i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22309 - 0.812736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22309 - 0.812736i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.10 + 0.751i)T \) |
good | 2 | \( 1 + (-1.22 - 0.856i)T + (0.684 + 1.87i)T^{2} \) |
| 7 | \( 1 + (2.03 + 4.36i)T + (-4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (-2.25 - 2.68i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (2.18 + 3.11i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (-0.367 - 1.37i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.30 + 0.750i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.35 + 0.633i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (-0.168 - 0.957i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (2.44 - 0.891i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-6.69 + 1.79i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-0.670 - 0.118i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (0.0175 - 0.200i)T + (-42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (-7.89 + 3.68i)T + (30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (2.81 + 2.81i)T + 53iT^{2} \) |
| 59 | \( 1 + (5.69 + 4.77i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (1.08 + 0.396i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-12.5 + 8.79i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (-11.1 - 6.42i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (0.343 + 0.0920i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-9.66 + 1.70i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (6.51 - 9.30i)T + (-28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (2.09 + 3.63i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.41 - 0.561i)T + (95.5 + 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07395326233726167116919003799, −10.14752851046835814630827583984, −9.451557855126933846683664953995, −7.82008889399151131980949153194, −7.22141755773599173949333113491, −6.46104592381420848285295890719, −5.06245763319967509543852978873, −4.16432322838963367412448289431, −3.52542698148374402631186320841, −0.75022747580311212708759917191,
2.43844860885888964601096415526, 3.29151180120175862885977858190, 4.28716593513607995012902271514, 5.51886469229684840178833381389, 6.47380843262574971369420640383, 7.78285837728443059622076771551, 8.781043472240937627163796849220, 9.513368552855250711194179844686, 11.02617996530267894865307876794, 11.77634949237087169474363420572