L(s) = 1 | + (0.377 + 0.264i)2-s + (−0.611 − 1.67i)4-s + (−0.538 + 2.17i)5-s + (−1.52 − 3.26i)7-s + (0.451 − 1.68i)8-s + (−0.777 + 0.676i)10-s + (−2.85 − 3.40i)11-s + (0.226 + 0.323i)13-s + (0.288 − 1.63i)14-s + (−2.12 + 1.78i)16-s + (−1.03 − 3.86i)17-s + (1.05 − 0.610i)19-s + (3.97 − 0.421i)20-s + (−0.178 − 2.03i)22-s + (3.57 + 1.66i)23-s + ⋯ |
L(s) = 1 | + (0.266 + 0.186i)2-s + (−0.305 − 0.839i)4-s + (−0.241 + 0.970i)5-s + (−0.575 − 1.23i)7-s + (0.159 − 0.596i)8-s + (−0.245 + 0.214i)10-s + (−0.860 − 1.02i)11-s + (0.0627 + 0.0896i)13-s + (0.0770 − 0.436i)14-s + (−0.530 + 0.445i)16-s + (−0.251 − 0.936i)17-s + (0.242 − 0.140i)19-s + (0.888 − 0.0942i)20-s + (−0.0380 − 0.434i)22-s + (0.746 + 0.347i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.251+0.967i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.251+0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.251+0.967i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(152,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), −0.251+0.967i)
|
Particular Values
L(1) |
≈ |
0.585975−0.757425i |
L(21) |
≈ |
0.585975−0.757425i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.538−2.17i)T |
good | 2 | 1+(−0.377−0.264i)T+(0.684+1.87i)T2 |
| 7 | 1+(1.52+3.26i)T+(−4.49+5.36i)T2 |
| 11 | 1+(2.85+3.40i)T+(−1.91+10.8i)T2 |
| 13 | 1+(−0.226−0.323i)T+(−4.44+12.2i)T2 |
| 17 | 1+(1.03+3.86i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−1.05+0.610i)T+(9.5−16.4i)T2 |
| 23 | 1+(−3.57−1.66i)T+(14.7+17.6i)T2 |
| 29 | 1+(0.885+5.02i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−9.19+3.34i)T+(23.7−19.9i)T2 |
| 37 | 1+(10.6−2.84i)T+(32.0−18.5i)T2 |
| 41 | 1+(−1.80−0.318i)T+(38.5+14.0i)T2 |
| 43 | 1+(0.218−2.49i)T+(−42.3−7.46i)T2 |
| 47 | 1+(1.18−0.554i)T+(30.2−36.0i)T2 |
| 53 | 1+(−3.53−3.53i)T+53iT2 |
| 59 | 1+(−0.467−0.391i)T+(10.2+58.1i)T2 |
| 61 | 1+(1.87+0.683i)T+(46.7+39.2i)T2 |
| 67 | 1+(−3.34+2.34i)T+(22.9−62.9i)T2 |
| 71 | 1+(−10.9−6.30i)T+(35.5+61.4i)T2 |
| 73 | 1+(−4.00−1.07i)T+(63.2+36.5i)T2 |
| 79 | 1+(−11.8+2.09i)T+(74.2−27.0i)T2 |
| 83 | 1+(1.54−2.20i)T+(−28.3−77.9i)T2 |
| 89 | 1+(1.23+2.13i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−0.567−0.0496i)T+(95.5+16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.82175044704897995988726746509, −10.22887972101213060854174270783, −9.450067899713204705018957459166, −8.026582565352648603309367531581, −7.01070941395287315343594026826, −6.36059700884820081047515103642, −5.19776502441649497411147221984, −3.98460304482037544208547070630, −2.88649881437348576015132234973, −0.56512280886366448659108174074,
2.21943262317393436463784996337, 3.45895406465383226832284665587, 4.74858765120266206437441683430, 5.41626994094993164834217000152, 6.89526927234373306420567084385, 8.118376735343112830803949560837, 8.681733218238475487067904060453, 9.490105915107510840661911872545, 10.67033964336532218973771095529, 12.01550434018311871671591044748