Properties

Label 2-405-135.122-c1-0-13
Degree $2$
Conductor $405$
Sign $-0.251 + 0.967i$
Analytic cond. $3.23394$
Root an. cond. $1.79831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.377 + 0.264i)2-s + (−0.611 − 1.67i)4-s + (−0.538 + 2.17i)5-s + (−1.52 − 3.26i)7-s + (0.451 − 1.68i)8-s + (−0.777 + 0.676i)10-s + (−2.85 − 3.40i)11-s + (0.226 + 0.323i)13-s + (0.288 − 1.63i)14-s + (−2.12 + 1.78i)16-s + (−1.03 − 3.86i)17-s + (1.05 − 0.610i)19-s + (3.97 − 0.421i)20-s + (−0.178 − 2.03i)22-s + (3.57 + 1.66i)23-s + ⋯
L(s)  = 1  + (0.266 + 0.186i)2-s + (−0.305 − 0.839i)4-s + (−0.241 + 0.970i)5-s + (−0.575 − 1.23i)7-s + (0.159 − 0.596i)8-s + (−0.245 + 0.214i)10-s + (−0.860 − 1.02i)11-s + (0.0627 + 0.0896i)13-s + (0.0770 − 0.436i)14-s + (−0.530 + 0.445i)16-s + (−0.251 − 0.936i)17-s + (0.242 − 0.140i)19-s + (0.888 − 0.0942i)20-s + (−0.0380 − 0.434i)22-s + (0.746 + 0.347i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.251 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.251 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-0.251 + 0.967i$
Analytic conductor: \(3.23394\)
Root analytic conductor: \(1.79831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (152, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1/2),\ -0.251 + 0.967i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.585975 - 0.757425i\)
\(L(\frac12)\) \(\approx\) \(0.585975 - 0.757425i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (0.538 - 2.17i)T \)
good2 \( 1 + (-0.377 - 0.264i)T + (0.684 + 1.87i)T^{2} \)
7 \( 1 + (1.52 + 3.26i)T + (-4.49 + 5.36i)T^{2} \)
11 \( 1 + (2.85 + 3.40i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (-0.226 - 0.323i)T + (-4.44 + 12.2i)T^{2} \)
17 \( 1 + (1.03 + 3.86i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (-1.05 + 0.610i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.57 - 1.66i)T + (14.7 + 17.6i)T^{2} \)
29 \( 1 + (0.885 + 5.02i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-9.19 + 3.34i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (10.6 - 2.84i)T + (32.0 - 18.5i)T^{2} \)
41 \( 1 + (-1.80 - 0.318i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (0.218 - 2.49i)T + (-42.3 - 7.46i)T^{2} \)
47 \( 1 + (1.18 - 0.554i)T + (30.2 - 36.0i)T^{2} \)
53 \( 1 + (-3.53 - 3.53i)T + 53iT^{2} \)
59 \( 1 + (-0.467 - 0.391i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.87 + 0.683i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-3.34 + 2.34i)T + (22.9 - 62.9i)T^{2} \)
71 \( 1 + (-10.9 - 6.30i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-4.00 - 1.07i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (-11.8 + 2.09i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (1.54 - 2.20i)T + (-28.3 - 77.9i)T^{2} \)
89 \( 1 + (1.23 + 2.13i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-0.567 - 0.0496i)T + (95.5 + 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82175044704897995988726746509, −10.22887972101213060854174270783, −9.450067899713204705018957459166, −8.026582565352648603309367531581, −7.01070941395287315343594026826, −6.36059700884820081047515103642, −5.19776502441649497411147221984, −3.98460304482037544208547070630, −2.88649881437348576015132234973, −0.56512280886366448659108174074, 2.21943262317393436463784996337, 3.45895406465383226832284665587, 4.74858765120266206437441683430, 5.41626994094993164834217000152, 6.89526927234373306420567084385, 8.118376735343112830803949560837, 8.681733218238475487067904060453, 9.490105915107510840661911872545, 10.67033964336532218973771095529, 12.01550434018311871671591044748

Graph of the $Z$-function along the critical line